login
A078854
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 2,6]; short d-string notation of pattern = [626].
17
23, 53, 263, 563, 593, 1223, 1283, 1613, 2333, 2543, 3533, 4013, 4643, 5843, 6263, 6353, 6563, 10853, 11483, 14543, 15263, 17483, 19073, 19373, 19463, 23663, 26723, 29123, 32363, 34253, 41603, 48473, 49193, 49523, 51413, 51473, 71333, 75983
OFFSET
1,1
COMMENTS
Subsequence of A049438. - R. J. Mathar, May 06 2017
LINKS
FORMULA
Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+6.
EXAMPLE
p=23,23+6=29,23+6+2=31,23+6+2+6=37 are consecutive primes.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[7500]], 4, 1], Differences[#]=={6, 2, 6}&]][[1]] (* Harvey P. Dale, Apr 17 2015 *)
CROSSREFS
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Sequence in context: A339188 A051650 A049438 * A078959 A238854 A045345
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 11 2002
EXTENSIONS
Listed terms verified by Ray Chandler, Apr 20 2009
STATUS
approved