login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078853
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern=[6,2,4]; short d-string notation of pattern = [624].
15
1601, 3911, 5471, 8081, 12101, 12911, 13751, 14621, 17021, 32051, 38321, 40841, 43391, 58901, 65831, 67421, 67751, 68891, 69821, 72161, 80141, 89591, 90011, 90191, 97571, 100511, 102191, 111821, 112241, 122021, 125921, 129281, 129581
OFFSET
1,1
COMMENTS
All terms are == 11 (mod 30). Is 180 the minimal first difference? - Zak Seidov, Jun 27 2015
Subsequence of A049438. - R. J. Mathar, May 06 2017
LINKS
FORMULA
Primes p = p(i) such that p(i+1)=p+6, p(i+2)=p+6+2, p(i+3)=p+6+2+4.
EXAMPLE
p=1601, 1601+6=1607, 1601+6+2=1609, 1601+6+2+4=1613 are consecutive primes.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[13000]], 4, 1], Differences[#]=={6, 2, 4} &]][[1]] (* Vincenzo Librandi, Jun 27 2015 *)
CROSSREFS
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], this sequence[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].
Sequence in context: A323496 A279241 A060566 * A078958 A031758 A154505
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 11 2002
EXTENSIONS
Listed terms verified by Ray Chandler, Apr 20 2009
STATUS
approved