login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078851 Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[4, 6, 2]; short d-string notation of pattern = [462]. 16
19, 127, 229, 1009, 1279, 1597, 1609, 2539, 3319, 3529, 3907, 3919, 4639, 4789, 4999, 5839, 5857, 7477, 7537, 8419, 9619, 12097, 12907, 13327, 15259, 15877, 17569, 17977, 19069, 22027, 23017, 24967, 27739, 28537, 32359, 33577, 36919, 38317 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A078561. - R. J. Mathar, May 06 2017

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

FORMULA

Primes p = p(i) such that p(i+1)=p+4, p(i+2)=p+4+6, p(i+3)=p+4+6+2.

EXAMPLE

p=19,19+4=23,19+4+6=29,19+4+6+2=31 are consecutive primes.

MATHEMATICA

Select[Prime@ Range[10^4], Differences@ Prime@ Range[#, # + 3] &@ PrimePi@ # == {4, 6, 2} &] (* Michael De Vlieger, Jul 02 2016 *)

CROSSREFS

Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets: A007530[242], A078847[246], A078848[264], A078849[266], A052378[424], A078850[426], A078851[462], A078852[466], A078853[624], A078854[626], A078855[642], A078856[646], A078857[662], A078858[664], A033451[666].

Sequence in context: A109669 A164905 A142106 * A202125 A169727 A177459

Adjacent sequences:  A078848 A078849 A078850 * A078852 A078853 A078854

KEYWORD

nonn

AUTHOR

Labos Elemer, Dec 11 2002

EXTENSIONS

Listed terms verified by Ray Chandler, Apr 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 03:12 EST 2018. Contains 299357 sequences. (Running on oeis4.)