login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339188
Highly insulated primes (see Comments for definition).
2
23, 53, 89, 211, 293, 409, 479, 631, 797, 839, 919, 1039, 1259, 1409, 1471, 1511, 1637, 1709, 1847, 1889, 2039, 2099, 2179, 2503, 2579, 2633, 2777, 2819, 2939, 3011, 3049, 3137, 3229, 3271, 3433, 3499, 3593, 3659, 3709, 3779, 3967, 4111, 4177, 4253, 4327, 4409, 4493, 4621, 4703, 4831
OFFSET
1,1
COMMENTS
Let degree of insulation D(p) for a prime p be defined as the largest m such that the prime between p-m and p+m is p only. Then the n-th insulated prime is said to be highly insulated if and only if D(A339148(n)) > D(A339148(n+1)) and D(A339148(n)) > D(A339148(n-1)).
LINKS
Abhimanyu Kumar and Anuraag Saxena, Insulated primes, arXiv:2011.14210 [math.NT], 2020. See also Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 602-612. See p. 610.
EXAMPLE
For the triplet (13,23,37) of insulated primes, the values of degree of insulation are D(13)=2, D(23)=4, and D(37)=3. Hence, 23 is the highly insulated prime.
MATHEMATICA
Block[{s = {0}~Join~Array[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &@ Prime@ # &, 660, 2], t}, t = Array[If[#1 < #2 > #3, #4, Nothing] & @@ Append[s[[# - 1 ;; # + 1]], #] &, Length@ s - 2, 2]; Array[If[s[[#1]] < s[[#2]] > s[[#3]], #4, Nothing] & @@ Append[t[[# - 1 ;; # + 1]], Prime@ t[[#]]] &, Length@ t - 2, 2] ] (* Michael De Vlieger, Dec 11 2020 *)
PROG
(PARI)
A339188(n) = { \\ Return the list of the first n highly insulated primes
my( HighInsulated=List([]), D(p)=min(nextprime(p+1)-p-1, p-precprime(p-1)); );
my( Dpred_ins=D(7), Pcur_ins=13, Dcur_ins=D(Pcur_ins) );
local( Dpred=D(Pcur_ins), p=nextprime(Pcur_ins+1), Dp=D(p), Pnext=nextprime(p+1), Dnext=D(Pnext) );
my(SearchNextInsulated() =
until(Dp > max(Dpred, Dnext),
Dpred = Dp; p = Pnext; Dp = Dnext;
Pnext = nextprime(p+1); Dnext = D(Pnext);
);
\\ At this point p is the first insulated prime > Dcur_ins
);
while(#HighInsulated<n,
until(Dcur_ins > max(Dpred_ins, Dp),
Dpred_ins = Dcur_ins; Pcur_ins = p; Dcur_ins = Dp;
SearchNextInsulated();
);
listput(HighInsulated, Pcur_ins);
);
return(HighInsulated);
} \\ François Marques, Dec 01 2020
CROSSREFS
Cf. A000040, A339148 (insulated primes).
Sequence in context: A128473 A132235 A277993 * A051650 A049438 A078854
KEYWORD
nonn
AUTHOR
Abhimanyu Kumar, Nov 27 2020
STATUS
approved