login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. cos(x)/(cos(x) - sin(x)).
22

%I #104 Dec 09 2021 00:58:07

%S 1,1,2,8,40,256,1952,17408,177280,2031616,25866752,362283008,

%T 5535262720,91620376576,1633165156352,31191159799808,635421069967360,

%U 13753735117275136,315212388819402752,7625476699018231808

%N E.g.f. cos(x)/(cos(x) - sin(x)).

%C For a refinement of these numbers see A185896.

%C A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. Let x_1,...,x_n be a signed permutation. Then we say 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0. For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0). Then a(n) equals the cardinality of S(n;0,0) [Verges]. An example is given below. - _Peter Bala_, Sep 02 2011

%C Original name was: E.g.f. cos(x)*(cos(x)+sin(x)) /cos(2*x). - _Arkadiusz Wesolowski_, Jul 25 2012

%C Number of plane (that is, ordered) increasing 0-1-2 trees on n vertices where the vertices of outdegree 1 or 2 come in two colors. An example is given below. - _Peter Bala_, Oct 10 2012

%H R. J. Mathar, <a href="/A000828/b000828.txt">Table of n, a(n) for n = 0..200</a>

%H Paul Barry, <a href="https://arxiv.org/abs/2107.14278">Series reversion with Jacobi and Thron continued fractions</a>, arXiv:2107.14278 [math.NT], 2021.

%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of Increasing Trees</a>, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.

%H D. Dumont, <a href="http://dx.doi.org/10.1006/aama.1995.1014">Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers</a>, Adv. Appl. Math., 16 (1995), 275-296.

%H Wiktor Ejsmont and Franz Lehner, <a href="https://arxiv.org/abs/2004.02679">The Free Tangent Law</a>, arXiv:2004.02679 [math.OA], 2020.

%H M. Josuat-Verges, <a href="http://arxiv.org/abs/1011.0929">Enumeration of snakes and cycle-alternating permutations</a>, arXiv:1011.0929 [math.CO], 2010.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%F E.g.f.: 1/(1- tan(x)). - _Emeric Deutsch_, Sep 10 2001

%F a(n) = A000831(n)/2 for n>0. - _Peter Luschny_, Nov 25 2010

%F a(n) = sum(evenp(n+k), k=1..n, (-1)^((n+k)/2)*sum(j=k..n, j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1)), n>0. - _Vladimir Kruchinin_, Aug 18 2010

%F a(n) = (-1)^((n^2-n)/2)*4^n*(E_{n}(1/2)+E_{n}(1))/2 for n >= 0, where E_{n}(x) is an Euler polynomial. - _Peter Luschny_, Nov 25 2010

%F From _Peter Bala_, Sep 02 2011: (Start)

%F a(n) = (2*i)^(n-1)*Sum_{k = 1..n} (-1)^(n-k)*k!* Stirling2(n,k) * ((1-i)/2)^(k-1), where i = sqrt(-1).

%F a(n) = 2^(n-1)*A000111(n) for n >= 1.

%F Let f(x) = 1+x^2 and define the effect of the operator D on a function g(x) by D(g(x)) = d/dx(f(x)*g(x)). Then for n >= 0, a(n+1) = D^n(1) evaluated at x = 1. (End)

%F From _Sergei N. Gladkovskii_, Dec 09 2011 - Dec 23 2013: (Start) Continued fractions:

%F E.g.f.: 1 + x/(G(0)-x); G(k) = 2*k + 1 - (x^2)/G(k+1).

%F E.g.f.: 1 + x/(U(0)-2*x) where U(k) = 4*k+1 + x/(1+x/(4*k+3 - x/(1- x/U(k+1)))).

%F E.g.f.: 1 + x/(U(0)-x) where U(k) = 2*k+1 - x^2/U(k+1).

%F G.f.: 1 + x/G(0) where G(k) = 1 - x*(2*k+2) - 2*x^2*(k+1)*(k+2)/G(k+1).

%F E.g.f.: 1 + x/T(0) where T(k) = 4*k+1 - x/(1 - x/(4*k+3 + x/(1 + x/T(k+1)))).

%F G.f.: 1 + x/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1)).

%F G.f.: 1 + x/(1-2*x)*T(0) where T(k) = 1 - 2*x^2*(k+1)*(k+2)/( 2*x^2*(k+1)*(k+2) - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1)).

%F E.g.f.: T(0) where T(k) = 1 + x/(4*k+1 - x/(1 - x/( 4*k+3 + x/T(k+1)))). (End)

%F G.f.: 1 /(1 - 1*x /(1 - 1*x /(1 - 4*x /(1 - 2*6*x^2 /(1 - 6*x /(1 - 4*x /(1 - 4*x /(1 - 10*x /(1 - 5*12*x^2 /(1 - 12*x / ...)))))))))). - _Michael Somos_, May 12 2012

%F a(n) ~ n! * 2^(2*n+1)/Pi^(n+1). - _Vaclav Kotesovec_, Jun 21 2013

%F a(0) = a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1). - _Ilya Gutkovskiy_, Nov 21 2020

%F From _Peter Bala_, Dec 04 2021: (Start)

%F F(x) = exp(2*x)*(exp(2*x) - 1)/(exp(4*x) + 1) = x + 2*x^2/2! - 8*x^3/3! - 40*x^4/4! + 256*x^5/5! + 1952*x^6/6! - - + + ... is the e.g.f. for the sequence [1, 2, -8, -40, 256, 1952, ...], a signed version of this sequence without the first term.

%F Let G(x) = x + 2*x^2 - 8*x^3 - 40*x^4 + 256*x^5 + 1952*x^6 - - + + ... be the corresponding o.g.f. We have the continued fraction representation G(x) = x/(1 - 2*x + 12*x^2/(1 + 20*x^2/(1 - 2*x + 56*x^2/(1 + 72*x^2/(1 - 2*x + ... + 4*n*(4*n-1)*x^2/(1 + 4*n*(4*n+1)*x^2/(1 - 2*x + ... ))))))).

%F The inverse binomial transform 1/(1 + x)*G(x/(1 + x)) = x - 11*x^3 + 361*x^5 - 24611*x^7 + - ... is a g.f. for a signed and aerated version of A000464. (End)

%e a(3) = 8: The eight snakes of type S(3;0,0) are

%e 0 1 -2 3 0, 0 1 -3 2 0, 0 2 1 3 0, 0 2 -1 3 0, 0 2 -3 1 0,

%e 0 3 1 2 0, 0 3 -1 2 0, 0 3 -2 1 0.

%e 1 + x + 2*x^2 + 8*x^3 + 40*x^4 + 256*x^5 + 1952*x^6 + 17408*x^7 + ...

%e a(3) = 8: The eight increasing 0-1-2 trees on 3 vertices are

%e ..1o (x2 colors)......1o (x2 colors)......1o (x2 colors).....

%e ...|................./.\................./.\.................

%e ..2o (x2 colors)...2o...o3.............3o...o2...............

%e ...|

%e ..3o

%e Totals.......................................................

%e ...4......+...........2.........+.........2....=...8.........

%p A000828 := n -> (-1)^((n-1)*n/2)*4^n*(Euler(n,1/2)+Euler(n,1))/2: # _Peter Luschny_, Nov 25 2010

%t a[n_] := (-1)^((n-1)*n/2)*4^n*(EulerE[n, 1/2] + EulerE[n, 1])/2; Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Nov 22 2012, after _Peter Luschny_ *)

%o (Maxima) a(n):=sum(if evenp(n+k) then (-1)^((n+k)/2)*sum(j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n); /* _Vladimir Kruchinin_, Aug 18 2010 */

%o (PARI) my(x='x + O('x^30)); Vec(serlaplace(cos(x)/(cos(x)-sin(x)))) \\ _Michel Marcus_, Nov 21 2020

%Y Cf. A000464, A000825. A000111, A185896, A235131, A235132.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E Name changed by _Arkadiusz Wesolowski_, Jul 25 2012