OFFSET
1,5
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
Conjecture: 46*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(11*n-74)*a(n-1) -(n-2)*(336*n^2-1359*n+1351)*a(n-2) +(-347*n^3+2190*n^2-3861*n+1330)*a(n-3) + 8*(2*n-7)*(4*n-15)*(4*n-17)*a(n-4) = 0.
Recurrence (order 3): 23*(n-2)*(n-1)*n*(9*n-25)*a(n) = -(n-2)*(n-1)*(54*n^2 - 231*n + 248)*a(n-1) + (n-2)*(1485*n^3 - 10065*n^2 + 22292*n - 16088)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(9*n-16)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 3/23*(2367+966*sqrt(3))^(1/3)+423/(23*(2367+966*sqrt(3))^(1/3))-2/23 = 3.145200906807902443... is the root of the equation -256 - 165*d + 6*d^2 + 23*d^3 = 0 and c = 1/48*sqrt(2)*sqrt((80793 + 65184*sqrt(3))^(1/3)*((80793 + 65184 * sqrt(3))^(2/3)-1839+9*(80793 + 65184 * sqrt(3))^(1/3)))/((80793 + 65184 * sqrt(3))^(1/3)*sqrt(Pi)) = 0.098446219937815765... - Vaclav Kotesovec, Sep 10 2013
EXAMPLE
If y= x-x^3-x^4, then x= y + y^3 + y^4 +3*y^5 +7*y^6 +16*y^7 + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x^3 - x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 10 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Oct 01 2012
STATUS
approved