login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217358
Series reversion of x-x^3-x^4.
5
1, 0, 1, 1, 3, 7, 16, 45, 110, 308, 819, 2275, 6328, 17748, 50388, 143412, 411939, 1187329, 3441559, 10015005, 29255655, 85766655, 252201690, 743819115, 2199446652, 6519727800, 19369551936, 57665571072, 172011364452, 514021640564, 1538650042952
OFFSET
1,5
LINKS
FORMULA
Conjecture: 46*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(11*n-74)*a(n-1) -(n-2)*(336*n^2-1359*n+1351)*a(n-2) +(-347*n^3+2190*n^2-3861*n+1330)*a(n-3) + 8*(2*n-7)*(4*n-15)*(4*n-17)*a(n-4) = 0.
Recurrence (order 3): 23*(n-2)*(n-1)*n*(9*n-25)*a(n) = -(n-2)*(n-1)*(54*n^2 - 231*n + 248)*a(n-1) + (n-2)*(1485*n^3 - 10065*n^2 + 22292*n - 16088)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(9*n-16)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 3/23*(2367+966*sqrt(3))^(1/3)+423/(23*(2367+966*sqrt(3))^(1/3))-2/23 = 3.145200906807902443... is the root of the equation -256 - 165*d + 6*d^2 + 23*d^3 = 0 and c = 1/48*sqrt(2)*sqrt((80793 + 65184*sqrt(3))^(1/3)*((80793 + 65184 * sqrt(3))^(2/3)-1839+9*(80793 + 65184 * sqrt(3))^(1/3)))/((80793 + 65184 * sqrt(3))^(1/3)*sqrt(Pi)) = 0.098446219937815765... - Vaclav Kotesovec, Sep 10 2013
EXAMPLE
If y= x-x^3-x^4, then x= y + y^3 + y^4 +3*y^5 +7*y^6 +16*y^7 + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x^3 - x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 10 2013 *)
CROSSREFS
Cf. A049140 (reversion of x-x^2-x^4).
Sequence in context: A058300 A000674 A129045 * A323692 A360782 A351821
KEYWORD
nonn
AUTHOR
R. J. Mathar, Oct 01 2012
STATUS
approved