login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Series reversion of x-x^3-x^4.
5

%I #12 Sep 11 2013 03:42:04

%S 1,0,1,1,3,7,16,45,110,308,819,2275,6328,17748,50388,143412,411939,

%T 1187329,3441559,10015005,29255655,85766655,252201690,743819115,

%U 2199446652,6519727800,19369551936,57665571072,172011364452,514021640564,1538650042952

%N Series reversion of x-x^3-x^4.

%H Vincenzo Librandi, <a href="/A217358/b217358.txt">Table of n, a(n) for n = 1..1000</a>

%F Conjecture: 46*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(11*n-74)*a(n-1) -(n-2)*(336*n^2-1359*n+1351)*a(n-2) +(-347*n^3+2190*n^2-3861*n+1330)*a(n-3) + 8*(2*n-7)*(4*n-15)*(4*n-17)*a(n-4) = 0.

%F Recurrence (order 3): 23*(n-2)*(n-1)*n*(9*n-25)*a(n) = -(n-2)*(n-1)*(54*n^2 - 231*n + 248)*a(n-1) + (n-2)*(1485*n^3 - 10065*n^2 + 22292*n - 16088)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(9*n-16)*a(n-3). - _Vaclav Kotesovec_, Sep 10 2013

%F a(n) ~ c*d^n/n^(3/2), where d = 3/23*(2367+966*sqrt(3))^(1/3)+423/(23*(2367+966*sqrt(3))^(1/3))-2/23 = 3.145200906807902443... is the root of the equation -256 - 165*d + 6*d^2 + 23*d^3 = 0 and c = 1/48*sqrt(2)*sqrt((80793 + 65184*sqrt(3))^(1/3)*((80793 + 65184 * sqrt(3))^(2/3)-1839+9*(80793 + 65184 * sqrt(3))^(1/3)))/((80793 + 65184 * sqrt(3))^(1/3)*sqrt(Pi)) = 0.098446219937815765... - _Vaclav Kotesovec_, Sep 10 2013

%e If y= x-x^3-x^4, then x= y + y^3 + y^4 +3*y^5 +7*y^6 +16*y^7 + ...

%t Rest[CoefficientList[InverseSeries[Series[x - x^3 - x^4, {x, 0, 20}], x], x]] (* _Vaclav Kotesovec_, Sep 10 2013 *)

%Y Cf. A049140 (reversion of x-x^2-x^4).

%K nonn

%O 1,5

%A _R. J. Mathar_, Oct 01 2012