login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217359
Series reversion of x+x^3+x^4.
1
1, 0, -1, -1, 3, 7, -8, -45, 0, 264, 273, -1365, -3192, 5508, 27132, -7752, -193743, -158631, 1177209, 2417415, -5673525, -23595585, 14488110, 187050435, 104481780, -1251127512, -2178989008, 6775504088, 23824892148, -23395134188, -204487059656, -57418615353, 1471227866951
OFFSET
1,5
LINKS
FORMULA
D-finite with recurrence 124*n*(n-1)*(n-2)*a(n) +(n-1)*(n-2)*(7*n-88)*a(n-1) +(n-2)*(870*n^2-3465*n+3347)*a(n-2) +(1243*n^3-9870*n^2+25869*n-22490)*a(n-3) +8*(4*n-15)*(2*n-7)*(4*n-17)*a(n-4) = 0.
Recurrence (order 3): 31*(n-2)*(n-1)*n*(15*n-41)*a(n) = (n-2)*(n-1)*(90*n^2 - 381*n + 400)*a(n-1) - (n-2)*(3285*n^3 - 22119*n^2 + 48706*n - 34960)*a(n-2) - 8*(2*n-5)*(4*n-13)*(4*n-11)*(15*n-26)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
Lim sup n->infinity |a(n)|^(1/n) = 16/sqrt(31) = 2.8736848... - Vaclav Kotesovec, Sep 10 2013
EXAMPLE
If y= x+x^3+x^4, then x=y -y^3 -y^4 +3*y^5 +7*y^6 -8*y^7 -45*y^8 +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x+x^3+x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 10 2013 *)
CROSSREFS
Cf. A217358 (x-x^3-x^4).
Sequence in context: A281678 A118622 A101366 * A244338 A336045 A090458
KEYWORD
sign,easy
AUTHOR
R. J. Mathar, Oct 01 2012
STATUS
approved