login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269168
Rule 30 binary tree permutation: a(1) = 1, a(2n) = A269160(a(n)), a(2n+1) = A269164(1+a(n)).
4
1, 7, 2, 25, 9, 14, 3, 111, 33, 63, 11, 50, 18, 13, 4, 401, 143, 231, 41, 193, 79, 53, 15, 222, 66, 126, 22, 51, 17, 28, 5, 1783, 529, 945, 175, 825, 295, 223, 55, 839, 257, 497, 95, 203, 69, 49, 19, 802, 286, 462, 82, 386, 158, 106, 30, 221, 67, 119, 21, 100, 36, 27, 6, 6409, 2295, 3703, 657, 3159, 1201, 849, 233
OFFSET
1,2
COMMENTS
This sequence can be represented as a binary tree. Each left hand child is produced as A269160(n), and each right hand child as A269164(1+n), when the parent node contains n:
|
...................1...................
7 2
25......../ \........9 14......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
111 33 63 11 50 18 13 4
401 143 231 41 193 79 53 15 222 66 126 22 51 17 28 5
etc.
Each maximal leftward branch (e.g. 1, 7, 25, ... (= A110240) or 9, 63, 193, ... or 2, 14, 50, ...) gives a trajectory of Rule 30 cellular automaton starting from a particular "seed configuration" which are given in A269164.
FORMULA
a(1) = 1, after which, a(2n) = A269160(a(n)), a(2n+1) = A269164(1+a(n)).
MATHEMATICA
nmax = (* sequence length *) 100; terms (* from A269164 *) = 2000; Clear[a, f]; A269160[n_] := BitXor[n, BitOr[2 n, 4 n]]; f[max_] := f[max] = (s = Sort[Table[A269160[n], {n, 0, max}]]; Complement[Range[Last[s]], s][[1 ;; terms]]); f[terms]; f[max = 2 terms]; While[f[max] != f[max/2], max = 2 max]; A269164[n_Integer] := If[n > Length[f[max]], 0, f[max][[n]]]; a[1] = 1; a[n_] := a[n] = If[EvenQ[n], A269160[a[n/2]], A269164[1 + a[(n - 1)/2]]]; A269168 = Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 23 2016 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A269168 n) (cond ((= 1 n) n) ((even? n) (A269160 (A269168 (/ n 2)))) (else (A269164 (+ 1 (A269168 (/ (- n 1) 2)))))))
CROSSREFS
Inverse: A269167.
Cf. A110240 (the left edge).
Sequence in context: A213836 A340801 A338284 * A279943 A279999 A217366
KEYWORD
nonn,tabf,look
AUTHOR
Antti Karttunen, Feb 21 2016
STATUS
approved