login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of colored integer partitions of n such that five colors are used and parts differ by size or by color.
6

%I #18 Jan 29 2021 19:41:16

%S 1,5,20,60,160,381,845,1760,3495,6660,12267,21935,38230,65140,108785,

%T 178437,287975,457965,718575,1113680,1706533,2587655,3885615,5781830,

%U 8530625,12486429,18140360,26169335,37501595,53403915,75597130,106408670,148973260,207496090

%N Number of colored integer partitions of n such that five colors are used and parts differ by size or by color.

%C With offset 0 five-fold convolution of A000009(k+1). - _George Beck_, Jan 29 2021

%H Vaclav Kotesovec, <a href="/A327383/b327383.txt">Table of n, a(n) for n = 5..10000</a> (terms 5..5000 from Alois P. Heinz)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%F a(n) ~ exp(Pi*sqrt(5*n/3)) * 5^(1/4) / (16 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 16 2019

%F G.f.: (-1 + Product_{m >= 1} (1 + x^m))^5. - _George Beck_, Jan 29 2021

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->

%p b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))

%p end:

%p a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):

%p seq(a(n), n=5..45);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];

%t a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];

%t a /@ Range[5, 45] (* _Jean-François Alcover_, Dec 15 2020, after _Alois P. Heinz_ *)

%Y Column k=5 of A308680.

%Y Cf. A000009.

%K nonn

%O 5,2

%A _Alois P. Heinz_, Sep 03 2019