login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319888
a(n) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 - 20*19*18*17*16 + ... - (up to the n-th term).
8
5, 20, 60, 120, 120, 110, 30, -600, -4920, -30120, -30105, -29910, -27390, 2640, 330240, 330220, 329860, 323400, 213960, -1530240, -1530215, -1529640, -1516440, -1226640, 4845360, 4845330, 4844490, 4821000, 4187640, -12255360, -12255325, -12254170, -12216090
OFFSET
1,1
COMMENTS
For similar sequences that alternate in descending blocks of k natural numbers, we have: a(n) = (-1)^floor(n/k) * Sum_{j=1..k-1} (floor((n-j)/k) - floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (-1)^(floor(j/k)+1) * (floor(j/k) - floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=5.
EXAMPLE
a(1) = 5;
a(2) = 5*4 = 20;
a(3) = 5*4*3 = 60;
a(4) = 5*4*3*2 = 120;
a(5) = 5*4*3*2*1 = 120;
a(6) = 5*4*3*2*1 - 10 = 110;
a(7) = 5*4*3*2*1 - 10*9 = 30;
a(8) = 5*4*3*2*1 - 10*9*8 = -600;
a(9) = 5*4*3*2*1 - 10*9*8*7 = -4920;
a(10) = 5*4*3*2*1 - 10*9*8*7*6 = -30120;
a(11) = 5*4*3*2*1 - 10*9*8*7*6 + 15 = -30105;
a(12) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14 = -29910;
a(13) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13 = -27390;
a(14) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12 = 2640;
a(15) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 = 330240;
a(16) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 - 20 = 330220;
a(17) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 - 20*19 = 329860;
a(18) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 - 20*19*18 = 323400;
a(19) = 5*4*3*2*1 - 10*9*8*7*6 + 15*14*13*12*11 - 20*19*18*17 = 213960;
etc.
MAPLE
a:=(n, k)->(-1)^(floor(n/k))* add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add( (-1)^(floor(j/k)+1)*(floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 5), n=1..40); # Muniru A Asiru, Sep 30 2018
CROSSREFS
For similar sequences, see: A001057 (k=1), A319885 (k=2), A319886 (k=3), A319887 (k=4), this sequence (k=5), A319889 (k=6), A319890 (k=7), A319891 (k=8), A319892 (k=9), A319893 (k=10).
Sequence in context: A272277 A272507 A256540 * A319869 A038165 A327383
KEYWORD
sign,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2018
STATUS
approved