login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319887
a(n) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 + ... - (up to the n-th term).
8
4, 12, 24, 24, 16, -32, -312, -1656, -1644, -1524, -336, 10224, 10208, 9984, 6864, -33456, -33436, -33076, -26616, 82824, 82800, 82272, 70680, -172200, -172172, -171444, -152544, 319200, 319168, 318208, 289440, -543840, -543804, -542580, -501000, 869880
OFFSET
1,1
COMMENTS
For similar sequences that alternate in descending blocks of k natural numbers, we have: a(n) = (-1)^floor(n/k) * Sum_{j=1..k-1} (floor((n-j)/k) - floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (-1)^(floor(j/k)+1) * (floor(j/k) - floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=4.
EXAMPLE
a(1) = 4;
a(2) = 4*3 = 12;
a(3) = 4*3*2 = 24;
a(4) = 4*3*2*1 = 24;
a(5) = 4*3*2*1 - 8 = 16;
a(6) = 4*3*2*1 - 8*7 = -32;
a(7) = 4*3*2*1 - 8*7*6 = -312;
a(8) = 4*3*2*1 - 8*7*6*5 = -1656;
a(9) = 4*3*2*1 - 8*7*6*5 + 12 = -1644;
a(10) = 4*3*2*1 - 8*7*6*5 + 12*11 = -1524;
a(11) = 4*3*2*1 - 8*7*6*5 + 12*11*10 = -336;
a(12) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 = 10224;
a(13) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16 = 10208;
a(14) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15 = 9984;
a(15) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14 = 6864;
a(16) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 = -33456;
a(17) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 + 20 = -33436;
a(18) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 + 20*19 = -33076;
a(19) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 + 20*19*18 = -26616;
a(20) = 4*3*2*1 - 8*7*6*5 + 12*11*10*9 - 16*15*14*13 + 20*19*18*17 = 82824;
etc.
MAPLE
a:=(n, k)->(-1)^(floor(n/k))* add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add( (-1)^(floor(j/k)+1)*(floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 4), n=1..40); # Muniru A Asiru, Sep 30 2018
CROSSREFS
For similar sequences, see: A001057 (k=1), A319885 (k=2), A319886 (k=3), this sequence (k=4), A319888 (k=5), A319889 (k=6), A319890 (k=7), A319891 (k=8), A319892 (k=9), A319893 (k=10).
Sequence in context: A321685 A156678 A277513 * A319868 A274187 A353991
KEYWORD
sign,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2018
STATUS
approved