OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: (1/2)*(1 + D(x, exp(exp(x) - 1) - 1) ) where D(x,y) = (exp(2*y)/(1 + y)^2) * Sum_{k>=0} x^k*(Sum_{j=0..k} Stirling2(k,j)*y^j)^2/k!. - Andrew Howroyd, Jan 20 2024
EXAMPLE
The a(3) = 7 pairs of set partitions:
(1)(2)(3)|(123)
(1)(23)|(12)(3)
(1)(23)|(13)(2)
(1)(23)|(123)
(12)(3)|(13)(2)
(12)(3)|(123)
(13)(2)|(123)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
costabstrQ[s_, t_]:=And@@Cases[s, x_:>Select[t, x!=#&&(SubsetQ[x, #]||SubsetQ[#, x])&]!={}];
Table[Length[Select[Subsets[sps[Range[n]], {2}], And[costabstrQ@@#, costabstrQ@@Reverse[#]]&]], {n, 5}]
PROG
(PARI)
F(x)={my(bell=(exp(y*(exp(x) - 1)) )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( 1 + exp( 2*(exp(exp(x) - 1) - exp(x)) ) * F(x) )/2)} \\ Andrew Howroyd, Jan 19 2024
(PARI) \\ 2nd prog, following formula - slightly slower
D(n, y) = (exp(2*y)/(1 + y)^2) * sum(k=0, n, x^k*sum(j=0, k, stirling(k, j, 2) * y^j)^2/k!, O(x*x^n))
seq(n) = Vec(serlaplace((1/2)*(1 + D(n, exp(exp(x + O(x*x^n)) - 1) - 1)))) \\ Andrew Howroyd, Jan 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 09 2018
EXTENSIONS
a(8) onwards from Andrew Howroyd, Jan 19 2024
STATUS
approved