login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322439
Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.
12
1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k = 1..n} A026820(n,k) * A026794(n,k).
a(n) = A000041(2n) - A362051(n) for n>=1. - Alois P. Heinz, Apr 27 2023
EXAMPLE
The a(5) = 15 pairs of integer partitions:
(5)|(5)
(41)|(5)
(32)|(5)
(311)|(5)
(221)|(5)
(221)|(32)
(2111)|(5)
(2111)|(32)
(11111)|(5)
(11111)|(41)
(11111)|(32)
(11111)|(311)
(11111)|(221)
(11111)|(2111)
(11111)|(11111)
MAPLE
g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
g(n, i-1) +g(n-i, min(i, n-i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(g(n, i)*b(n-i, i), i=1..n))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Dec 09 2018
MATHEMATICA
Table[Length[Select[Tuples[IntegerPartitions[n], 2], Max@@First[#]<=Min@@Last[#]&]], {n, 20}]
(* Second program: *)
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 08 2018
STATUS
approved