login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A322438
Number of unordered pairs of factorizations of n into factors > 1 where no factor of one properly divides any factor of the other.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4
OFFSET
1,120
COMMENTS
First differs from A322437 at a(144) = 4, A322437(144) = 3.
First differs from A379958 at a(120) = 2, A379958(120) = 1.
EXAMPLE
The a(240) = 5 pairs of factorizations::
(4*4*15)|(4*6*10)
(6*40)|(15*16)
(8*30)|(12*20)
(10*24)|(15*16)
(12*20)|(15*16)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
divpropQ[x_, y_]:=And[x!=y, Divisible[x, y]];
Table[Length[Select[Subsets[facs[n], {2}], And[!Or@@divpropQ@@@Tuples[#], !Or@@divpropQ@@@Reverse/@Tuples[#]]&]], {n, 100}]
PROG
(PARI)
factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z, Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf, d); z = factorizations(n/d, d, newf, z))); (z));
is_proper_ndf_pair(fac1, fac2) = { for(i=1, #fac1, for(j=1, #fac2, if((fac1[i]!=fac2[j]) && (!(fac1[i]%fac2[j]) || !(fac2[j]%fac1[i])), return(0)))); (1); };
number_of_proper_ndfpairs(z) = sum(i=1, #z, sum(j=i+1, #z, is_proper_ndf_pair(z[i], z[j])));
A322438(n) = number_of_proper_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Jan 24 2025
KEYWORD
nonn,changed
AUTHOR
Gus Wiseman, Dec 08 2018
EXTENSIONS
Data section extended up to a(144) by Antti Karttunen, Jan 24 2025
STATUS
approved