login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204463
Number of n-element subsets that can be chosen from {1,2,...,7*n} having element sum n*(7*n+1)/2.
2
1, 1, 7, 50, 519, 5910, 73294, 957332, 13011585, 182262067, 2615047418, 38257201350, 568784501596, 8571868074560, 130687117401934, 2012485947249822, 31262279693472267, 489374243181858825, 7712880007117038531, 122301036027089010734, 1949904188227477978314
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n*(7*n+1)/2 into n distinct parts <=7*n.
LINKS
EXAMPLE
a(2) = 7 because there are 7 2-element subsets that can be chosen from {1,2,...,14} having element sum 15: {1,14}, {2,13}, {3,12}, {4,11}, {5,10}, {6,9}, {7,8}.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n*(7*n+1)/2, 7*n, n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1;
b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]];
a[n_] := b[n(7n+1)/2, 7n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Row n=7 of A204459.
Sequence in context: A267243 A197570 A319884 * A041086 A197890 A320989
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 18 2012
STATUS
approved