login
A204460
Number of 2*n-element subsets that can be chosen from {1,2,...,8*n} having element sum n*(8*n+1).
2
1, 4, 86, 3486, 178870, 10388788, 652694106, 43304881124, 2990752400778, 212997373622366, 15542763534960598, 1156764114321375362, 87507330113965391948, 6711208401368504338646, 520758394504342278328914, 40818243590325732399837872, 3227693268242421225516534768
OFFSET
0,2
COMMENTS
a(n) is the number of partitions of n*(8*n+1) into 2*n distinct parts <=8*n.
LINKS
EXAMPLE
a(1) = 4 because there are 4 2-element subsets that can be chosen from {1,2,...,8} having element sum 9: {1,8}, {2,7}, {3,6}, {4,5}.
MAPLE
b:= proc(n, i, t) option remember;
`if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,
`if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))
end:
a:= n-> b(n*(8*n+1), 8*n, 2*n):
seq(a(n), n=0..15);
MATHEMATICA
b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1;
b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]];
a[n_] := b[n(8n+1), 8n, 2n];
a /@ Range[0, 15] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Bisection of row n=4 of A204459.
Sequence in context: A163279 A130268 A293318 * A162086 A116320 A220277
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 18 2012
STATUS
approved