login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319890
a(n) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20*19*18*17*16*15 - ... + (up to the n-th term).
8
7, 42, 210, 840, 2520, 5040, 5040, 5026, 4858, 2856, -18984, -235200, -2157120, -17292240, -17292219, -17291820, -17284260, -17148600, -14850360, 21777840, 568758960, 568758932, 568758204, 568739304, 568267560, 556965360, 297506160, -5398802640, -5398802605
OFFSET
1,1
COMMENTS
For similar sequences that alternate in descending blocks of k natural numbers, we have: a(n) = (-1)^floor(n/k) * Sum_{j=1..k-1} (floor((n-j)/k) - floor((n-j-1)/k)) * (Product_{i=1..j} n-i-j+k+1) + Sum_{j=1..n} (-1)^(floor(j/k)+1) * (floor(j/k) - floor((j-1)/k)) * (Product_{i=1..k} j-i+1). Here, k=7.
EXAMPLE
a(1) = 7;
a(2) = 7*6 = 42;
a(3) = 7*6*5 = 210;
a(4) = 7*6*5*4 = 840;
a(5) = 7*6*5*4*3 = 2520;
a(6) = 7*6*5*4*3*2 = 5040;
a(7) = 7*6*5*4*3*2*1 = 5040;
a(8) = 7*6*5*4*3*2*1 - 14 = 5026;
a(9) = 7*6*5*4*3*2*1 - 14*13 = 4858;
a(10) = 7*6*5*4*3*2*1 - 14*13*12 = 2856;
a(11) = 7*6*5*4*3*2*1 - 14*13*12*11 = -18984;
a(12) = 7*6*5*4*3*2*1 - 14*13*12*11*10 = -235200;
a(13) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9 = -2157120;
a(14) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 = -17292240;
a(15) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21 = -17292219;
a(16) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20 = -17291820;
a(17) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20*19 = -17284260;
a(18) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20*19*18 = -17148600;
a(19) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20*19*18*17 = -14850360;
a(20) = 7*6*5*4*3*2*1 - 14*13*12*11*10*9*8 + 21*20*19*18*17*16 = 21777840;
etc.
MAPLE
a:=(n, k)->(-1)^(floor(n/k))* add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1, i=1..j)), j=1..k-1) + add( (-1)^(floor(j/k)+1)*(floor(j/k)-floor((j-1)/k))*(mul(j-i+1, i=1..k)), j=1..n): seq(a(n, 7), n=1..35); # Muniru A Asiru, Sep 30 2018
CROSSREFS
For similar sequences, see: A001057 (k=1), A319885 (k=2), A319886 (k=3), A319887 (k=4), A319888 (k=5), A319889 (k=6), this sequence (k=7), A319891 (k=8), A319892 (k=9), A319893 (k=10).
Sequence in context: A255614 A022731 A092072 * A319871 A374506 A261482
KEYWORD
sign,easy
AUTHOR
Wesley Ivan Hurt, Sep 30 2018
STATUS
approved