login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007373
Numbers k such that sigma(k+2) = sigma(k).
(Formerly M5234)
20
33, 54, 284, 366, 834, 848, 918, 1240, 1504, 2910, 2913, 3304, 4148, 4187, 6110, 6902, 7169, 7912, 9359, 10250, 10540, 12565, 15085, 17272, 17814, 19004, 19688, 21410, 21461, 24881, 25019, 26609, 28124, 30592, 30788, 31484, 38210, 38982, 39786, 40310, 45354
OFFSET
1,1
COMMENTS
Numbers k such that antisigma(k+2) - antisigma(k) = 2*k + 3, where antisigma(m) = A024816(m) = sum of nondivisors of m. - Jaroslav Krizek, Mar 17 2013
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1000 terms from Zak Seidov)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A. Weingartner, On the Solutions of sigma(n) = sigma(n+k), Journal of Integer Sequences, Vol. 14 (2011), #11.5.5.
MATHEMATICA
Flatten[Position[Partition[DivisorSigma[1, Range[300000]], 3, 1], {x_, _, x_}]] (* Harvey P. Dale, Aug 08 2011 *)
SequencePosition[DivisorSigma[1, Range[300000]], {x_, _, x_}][[All, 1]] (* Harvey P. Dale, Nov 17 2022 *)
PROG
(PARI) je=[]; for(n=1, 10^5, a=sigma(n); b=sigma(n+2); if(a==b, je=concat(je, n))); je
CROSSREFS
Essentially the same as A055574.
Sequence in context: A204374 A261107 A211141 * A229254 A242957 A024628
KEYWORD
nonn
EXTENSIONS
More terms from Jason Earls, Jul 20 2001
STATUS
approved