login
A007370
Numbers k such that sigma(x) = k has a unique solution.
(Formerly M2319)
21
1, 3, 4, 6, 7, 8, 13, 14, 15, 20, 28, 30, 36, 38, 39, 40, 44, 57, 62, 63, 68, 74, 78, 91, 93, 102, 110, 112, 121, 127, 133, 138, 150, 158, 160, 162, 164, 171, 174, 176, 183, 194, 195, 198, 200, 204, 212, 217, 222, 230, 242, 255, 256, 258, 260, 266, 278, 282
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Wacław Sierpiński, Elementary Theory of Numbers, Państ. Wydaw. Nauk., Warsaw, 1964, p. 165.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
MATHEMATICA
a = Table[ 0, {250} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 251, a[ [ s ] ]++ ], {n, 1, 250} ]; Select[ Range[ 250 ], a[ [ # ] ] == 1 & ]
PROG
(PARI) list(lim)=my(v=vectorsmall(lim\1), u=List(), s); for(k=1, #v, s=sigma(k); if(s<=#v, v[s]++)); for(k=1, #v, if(v[k]==1, listput(u, k))); Vec(u) \\ Charles R Greathouse IV, Jun 15 2015
(PARI) is(k) = invsigmaNum(k) == 1 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp
CROSSREFS
Cf. A000203.
Number of solutions: A007369 (0), this sequence (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).
Sequence in context: A108348 A085149 A239458 * A322376 A376424 A044813
KEYWORD
nonn
STATUS
approved