login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269776
T(n,k)=Number of length-n 0..k arrays with every repeated value unequal to the previous repeated value plus one mod k+1.
10
2, 3, 4, 4, 9, 8, 5, 16, 27, 14, 6, 25, 64, 78, 24, 7, 36, 125, 252, 222, 40, 8, 49, 216, 620, 984, 624, 66, 9, 64, 343, 1290, 3060, 3816, 1740, 108, 10, 81, 512, 2394, 7680, 15040, 14724, 4824, 176, 11, 100, 729, 4088, 16674, 45600, 73680, 56592, 13320, 286, 12, 121
OFFSET
1,1
COMMENTS
Table starts
...2.....3......4.......5........6.........7..........8..........9.........10
...4.....9.....16......25.......36........49.........64.........81........100
...8....27.....64.....125......216.......343........512........729.......1000
..14....78....252.....620.....1290......2394.......4088.......6552.......9990
..24...222....984....3060.....7680.....16674......32592......58824......99720
..40...624...3816...15040....45600....115920.....259504.....527616.....994680
..66..1740..14724...73680...270150....804636....2063880....4728384....9915210
.108..4824..56592..360000..1597500...5577768...16398144...42342912...98779500
.176.13320.216864.1755200..9432000..38621016..130175360..378929664..983566800
.286.36672.829116.8542720.55616250.267152256.1032602872.3389054976.9788946390
LINKS
FORMULA
Empirical for column k (apparently a(n) = 2*k*a(n-1) -k*(k-1)*a(n-2) -k^2*a(n-3)):
k=1: a(n) = 2*a(n-1) -a(n-3)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3)
k=3: a(n) = 6*a(n-1) -6*a(n-2) -9*a(n-3)
k=4: a(n) = 8*a(n-1) -12*a(n-2) -16*a(n-3)
k=5: a(n) = 10*a(n-1) -20*a(n-2) -25*a(n-3)
k=6: a(n) = 12*a(n-1) -30*a(n-2) -36*a(n-3)
k=7: a(n) = 14*a(n-1) -42*a(n-2) -49*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 6*n^2 + 3*n
n=5: a(n) = n^5 + 5*n^4 + 10*n^3 + 7*n^2 + n
n=6: a(n) = n^6 + 6*n^5 + 15*n^4 + 14*n^3 + 4*n^2
n=7: a(n) = n^7 + 7*n^6 + 21*n^5 + 25*n^4 + 11*n^3 + n^2
EXAMPLE
Some solutions for n=6 k=4
..1. .4. .0. .3. .3. .4. .0. .4. .0. .0. .2. .0. .2. .4. .1. .0
..4. .0. .3. .0. .0. .0. .4. .4. .4. .0. .0. .3. .2. .3. .2. .4
..3. .1. .4. .3. .2. .0. .3. .2. .0. .3. .3. .4. .4. .1. .3. .0
..2. .2. .4. .0. .2. .4. .3. .0. .2. .3. .1. .1. .1. .1. .1. .4
..1. .4. .4. .3. .3. .0. .1. .3. .0. .0. .1. .3. .0. .4. .3. .0
..2. .1. .1. .2. .4. .0. .1. .3. .1. .4. .1. .2. .3. .4. .3. .4
CROSSREFS
Column 1 is A019274(n+2).
Column 2 is A269613.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).
Row 4 is A058895(n+1).
Sequence in context: A250351 A269690 A269494 * A269619 A269435 A269656
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 04 2016
STATUS
approved