Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 01 2016 14:57:21
%S 2,3,4,4,9,8,5,16,27,15,6,25,64,78,28,7,36,125,249,222,51,8,49,216,
%T 612,954,624,92,9,64,343,1275,2956,3611,1740,164,10,81,512,2370,7440,
%U 14125,13544,4824,290,11,100,729,4053,16218,43013,66925,50442,13320,509,12,121
%N T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
%C Table starts
%C ...2.....3......4.......5........6.........7.........8..........9.........10
%C ...4.....9.....16......25.......36........49........64.........81........100
%C ...8....27.....64.....125......216.......343.......512........729.......1000
%C ..15....78....249.....612.....1275......2370......4053.......6504.......9927
%C ..28...222....954....2956.....7440.....16218.....31822......57624......97956
%C ..51...624...3611...14125....43013....110099....248143.....507521.....961625
%C ..92..1740..13544...66925...246798....742487...1923796....4447329....9398090
%C .164..4824..50442..314935..1407232...4979260..14840928...38800210...91490344
%C .290.13320.186822.1473779..7982022..33232924.113998742..337209090..887591878
%C .509.36672.688899.6865098.45074673.220896016.872397577.2920747321.8584628259
%H R. H. Hardin, <a href="/A269619/b269619.txt">Table of n, a(n) for n = 1..9999</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
%F k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3)
%F k=3: a(n) = 12*a(n-1) -51*a(n-2) +81*a(n-3) -3*a(n-4) -63*a(n-5) -24*a(n-6) -9*a(n-7)
%F k=4: [order 7]
%F k=5: [order 13]
%F k=6: [order 15]
%F k=7: [order 17]
%F Empirical for row n:
%F n=1: a(n) = n + 1
%F n=2: a(n) = n^2 + 2*n + 1
%F n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
%F n=4: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n
%F n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 12*n^2 + 3*n
%F n=6: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2
%F n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 18*n^3 + 36*n^2 - 19*n - 7 for n>2
%e Some solutions for n=6 k=4
%e ..1. .2. .0. .2. .1. .4. .3. .4. .2. .2. .0. .2. .2. .2. .2. .0
%e ..0. .3. .3. .1. .4. .0. .0. .0. .2. .1. .0. .1. .0. .2. .4. .3
%e ..4. .3. .2. .1. .1. .3. .0. .4. .1. .0. .4. .3. .1. .2. .4. .1
%e ..3. .3. .2. .2. .4. .2. .4. .0. .3. .3. .0. .3. .4. .3. .3. .1
%e ..0. .3. .1. .3. .0. .1. .3. .4. .1. .1. .2. .1. .4. .1. .4. .1
%e ..0. .3. .0. .4. .4. .1. .4. .2. .1. .0. .1. .0. .3. .4. .2. .2
%Y Column 1 is A029907(n+1).
%Y Row 1 is A000027(n+1).
%Y Row 2 is A000290(n+1).
%Y Row 3 is A000578(n+1).
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 01 2016