login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269620
Number of length-4 0..n arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
1
15, 78, 249, 612, 1275, 2370, 4053, 6504, 9927, 14550, 20625, 28428, 38259, 50442, 65325, 83280, 104703, 130014, 159657, 194100, 233835, 279378, 331269, 390072, 456375, 530790, 613953, 706524, 809187, 922650, 1047645, 1184928, 1335279
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n.
Conjectures from Colin Barker, Jan 25 2019: (Start)
G.f.: 3*x*(5 + x + 3*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=8:
..2. .5. .6. .8. .5. .2. .1. .4. .1. .5. .5. .6. .0. .5. .7. .2
..2. .7. .2. .7. .2. .2. .0. .6. .0. .1. .6. .0. .3. .6. .1. .5
..6. .5. .7. .0. .2. .3. .6. .7. .0. .5. .1. .2. .5. .2. .7. .2
..3. .2. .6. .0. .5. .8. .0. .6. .7. .6. .2. .2. .4. .4. .2. .4
CROSSREFS
Row 4 of A269619.
Sequence in context: A128272 A180579 A081591 * A269436 A044202 A044583
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved