OFFSET
1,3
COMMENTS
limit{n -> inf} b(n)*b(n+1) = 1.
EXAMPLE
b(n): 1, 1/3, 15/7, 77/171, 5301/2401,...
F(5)^2/F(4)^2 = 25/9 equals [b(1);b(2),b(3),b(4)] = 1 +1/(1/3 +1/(15/7 +171/77)).
F(6)^2/F(5)^2 = 64/25 equals [b(1);b(2),b(3),b(4),b(5)] = 1 +1/(1/3 +1/(15/7 +1/(77/171 +2401/5301)).
MAPLE
A128272 := proc(nmax) local a, b, i, n, ffrac ; b := [1] ; while nops(b) < nmax do n := nops(b)+1 ; ffrac := (combinat[fibonacci](n+1)/combinat[fibonacci](n))^2 ; for i from 1 to n-1 do ffrac := 1/(ffrac-b[i]) ; od: b := [op(b), ffrac] ; od: a := [] ; for i from 1 to nops(b) do a := [op(a), numer(op(i, b))] ; od: RETURN(a) ; end: op(A128272(14)) ; # R. J. Mathar, Oct 08 2007
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Feb 22 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 08 2007
STATUS
approved