login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128272
a(n) = the numerator of b(n): {b(n)} is such that the continued fraction (of rational terms) [b(1);b(2),...,b(n)] equals the F(n+1)^2/F(n)^2, for every positive integer n, where F(n) is the n-th Fibonacci number.
2
1, 1, 15, 77, 5301, 189679, 87596289, 21608003585, 68221625702463, 115452529488363949, 2497495662248930113941, 80258100236324702562311, 4295613290302749695769359713665, 341566880541004135370464340131322497
OFFSET
1,3
COMMENTS
limit{n -> inf} b(n)*b(n+1) = 1.
EXAMPLE
b(n): 1, 1/3, 15/7, 77/171, 5301/2401,...
F(5)^2/F(4)^2 = 25/9 equals [b(1);b(2),b(3),b(4)] = 1 +1/(1/3 +1/(15/7 +171/77)).
F(6)^2/F(5)^2 = 64/25 equals [b(1);b(2),b(3),b(4),b(5)] = 1 +1/(1/3 +1/(15/7 +1/(77/171 +2401/5301)).
MAPLE
A128272 := proc(nmax) local a, b, i, n, ffrac ; b := [1] ; while nops(b) < nmax do n := nops(b)+1 ; ffrac := (combinat[fibonacci](n+1)/combinat[fibonacci](n))^2 ; for i from 1 to n-1 do ffrac := 1/(ffrac-b[i]) ; od: b := [op(b), ffrac] ; od: a := [] ; for i from 1 to nops(b) do a := [op(a), numer(op(i, b))] ; od: RETURN(a) ; end: op(A128272(14)) ; # R. J. Mathar, Oct 08 2007
CROSSREFS
Cf. A128273.
Sequence in context: A205433 A303097 A374219 * A180579 A081591 A269620
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Feb 22 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 08 2007
STATUS
approved