OFFSET
0,7
COMMENTS
For n >= 5, a(n) is the maximal product of 5 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,4,-8,4,0,0,-6,12,-6,0,0,4,-8,4,0,0,-1,2,-1).
FORMULA
From R. J. Mathar, May 08 2013: (Start)
a(n) = +2*a(n-1) -a(n-2) +4*a(n-5) -8*a(n-6) +4*a(n-7) -6*a(n-10) +12*a(n-11) -6*a(n-12) +4*a(n-15) -8*a(n-16) +4*a(n-17) -a(n-20) +2*a(n-21) -a(n-22).
G.f.: x^5 *(x^10 -2*x^9 +4*x^8 -4*x^7 +8*x^6 -8*x^5 +8*x^4 -4*x^3 +4*x^2 -2*x+1) *(1+x)^2 / ( (x^4+x^3+x^2+x+1)^4 *(x-1)^6 ). (End)
a(5*m) = m^5 (A000584). - Bernard Schott, Sep 21 2022
Sum_{n>=5} 1/a(n) = 1 + zeta(5). - Amiram Eldar, Jan 10 2023
MATHEMATICA
CoefficientList[Series[x^5*(x^10 - 2*x^9 + 4*x^8 - 4*x^7 + 8*x^6 - 8*x^5 + 8*x^4 - 4*x^3 + 4*x^2 - 2*x + 1)*(1 + x)^2/((x^4 + x^3 + x^2 + x + 1)^4*(x - 1)^6), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jun 29 2022 *)
PROG
(Maxima) A008382(n):=floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5)$
makelist(A008382(n), n, 0, 30); /* Martin Ettl, Oct 26 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved