login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008382
a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5).
13
0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 324, 432, 576, 768, 1024, 1280, 1600, 2000, 2500, 3125, 3750, 4500, 5400, 6480, 7776, 9072, 10584, 12348, 14406, 16807, 19208, 21952, 25088, 28672, 32768, 36864, 41472, 46656, 52488, 59049, 65610, 72900, 81000
OFFSET
0,7
COMMENTS
For n >= 5, a(n) is the maximal product of 5 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,4,-8,4,0,0,-6,12,-6,0,0,4,-8,4,0,0,-1,2,-1).
FORMULA
From R. J. Mathar, May 08 2013: (Start)
a(n) = +2*a(n-1) -a(n-2) +4*a(n-5) -8*a(n-6) +4*a(n-7) -6*a(n-10) +12*a(n-11) -6*a(n-12) +4*a(n-15) -8*a(n-16) +4*a(n-17) -a(n-20) +2*a(n-21) -a(n-22).
G.f.: x^5 *(x^10 -2*x^9 +4*x^8 -4*x^7 +8*x^6 -8*x^5 +8*x^4 -4*x^3 +4*x^2 -2*x+1) *(1+x)^2 / ( (x^4+x^3+x^2+x+1)^4 *(x-1)^6 ). (End)
a(5*m) = m^5 (A000584). - Bernard Schott, Sep 21 2022
Sum_{n>=5} 1/a(n) = 1 + zeta(5). - Amiram Eldar, Jan 10 2023
MATHEMATICA
CoefficientList[Series[x^5*(x^10 - 2*x^9 + 4*x^8 - 4*x^7 + 8*x^6 - 8*x^5 + 8*x^4 - 4*x^3 + 4*x^2 - 2*x + 1)*(1 + x)^2/((x^4 + x^3 + x^2 + x + 1)^4*(x - 1)^6), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jun 29 2022 *)
PROG
(Maxima) A008382(n):=floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5)$
makelist(A008382(n), n, 0, 30); /* Martin Ettl, Oct 26 2012 */
CROSSREFS
Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), this sequence (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Sequence in context: A289275 A316758 A316750 * A208742 A323395 A326079
KEYWORD
nonn
STATUS
approved