login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008383
Coordination sequence for A_4 lattice.
4
1, 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750, 15620, 20260, 25740, 32130, 39500, 47920, 57460, 68190, 80180, 93500, 108220, 124410, 142140, 161480, 182500, 205270, 229860, 256340, 284780, 315250, 347820, 382560, 419540, 458830, 500500, 544620
OFFSET
0,2
REFERENCES
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
FORMULA
a(n) = 5*n*(7*n^2 + 5)/3, a(0) = 1.
G.f.: (1+16*x+36*x^2+16*x^3+x^4)/(1-x)^4 = 1+10*x*(2+3*x+2*x^2)/(x-1)^4. - Colin Barker, Apr 13 2012
E.g.f.: (1/3)*(3 + 5*x*(12 + 21*x + 7*x^2)*exp(x)). - G. C. Greubel, May 25 2023
MAPLE
a:= n-> `if`(n=0, 1, 35/3*n^3+25/3*n): seq (a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[(1+16x+36x^2+16x^3+x^4)/(1-x)^4, {x, 0, 40}], x] (* Harvey P. Dale, Dec 01 2013 *)
Join[{1}, LinearRecurrence[{4, -6, 4, -1}, {20, 110, 340, 780}, 40]] (* Jean-François Alcover, Jan 07 2019 *)
PROG
(Magma) [n eq 0 select 1 else 5*n*(7*n^2+5)/3: n in [0..45]]; // G. C. Greubel, May 25 2023
(SageMath) [5*n*(7*n^2+5)/3+int(n==0) for n in range(46)] # G. C. Greubel, May 25 2023
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved