Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Jan 10 2023 07:59:38
%S 0,0,0,0,0,1,2,4,8,16,32,48,72,108,162,243,324,432,576,768,1024,1280,
%T 1600,2000,2500,3125,3750,4500,5400,6480,7776,9072,10584,12348,14406,
%U 16807,19208,21952,25088,28672,32768,36864,41472,46656,52488,59049,65610,72900,81000
%N a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5).
%C For n >= 5, a(n) is the maximal product of 5 positive integers with sum n. - _Wesley Ivan Hurt_, Jun 29 2022
%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,4,-8,4,0,0,-6,12,-6,0,0,4,-8,4,0,0,-1,2,-1).
%F From _R. J. Mathar_, May 08 2013: (Start)
%F a(n) = +2*a(n-1) -a(n-2) +4*a(n-5) -8*a(n-6) +4*a(n-7) -6*a(n-10) +12*a(n-11) -6*a(n-12) +4*a(n-15) -8*a(n-16) +4*a(n-17) -a(n-20) +2*a(n-21) -a(n-22).
%F G.f.: x^5 *(x^10 -2*x^9 +4*x^8 -4*x^7 +8*x^6 -8*x^5 +8*x^4 -4*x^3 +4*x^2 -2*x+1) *(1+x)^2 / ( (x^4+x^3+x^2+x+1)^4 *(x-1)^6 ). (End)
%F a(5*m) = m^5 (A000584). - _Bernard Schott_, Sep 21 2022
%F Sum_{n>=5} 1/a(n) = 1 + zeta(5). - _Amiram Eldar_, Jan 10 2023
%t CoefficientList[Series[x^5*(x^10 - 2*x^9 + 4*x^8 - 4*x^7 + 8*x^6 - 8*x^5 + 8*x^4 - 4*x^3 + 4*x^2 - 2*x + 1)*(1 + x)^2/((x^4 + x^3 + x^2 + x + 1)^4*(x - 1)^6), {x, 0, 60}], x] (* _Wesley Ivan Hurt_, Jun 29 2022 *)
%o (Maxima) A008382(n):=floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5)$
%o makelist(A008382(n),n,0,30); /* _Martin Ettl_, Oct 26 2012 */
%Y Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), this sequence (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
%Y Cf. A000584, A013663.
%K nonn
%O 0,7
%A _N. J. A. Sloane_