OFFSET
0,11
COMMENTS
For n >= 9, a(n) is the maximal product of 9 positive integers with sum n. - Wesley Ivan Hurt, Jul 08 2022
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 0, 0, 0, -28, 56, -28, 0, 0, 0, 0, 0, 0, 56, -112, 56, 0, 0, 0, 0, 0, 0, -70, 140, -70, 0, 0, 0, 0, 0, 0, 56, -112, 56, 0, 0, 0, 0, 0, 0, -28, 56, -28, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 0, 0, 0, -1, 2, -1).
FORMULA
a(9*n) = n^9. - Bernard Schott, Nov 20 2022
a(9*n+j) = n^(9-j)*(n+1)^j for 0 <= j <= 8. - Robert Israel, Nov 21 2022
Sum_{n>=9} 1/a(n) = 1 + zeta(9). - Amiram Eldar, Jan 10 2023
MATHEMATICA
A009714[n_] := Product[Floor[(n + i)/9], {i, 0, 8}];
Array[A009714, 50, 0] (* Paolo Xausa, Aug 21 2024 *)
PROG
(PARI) a(n) = prod(k=0, 8, floor((n+k)/9)); \\ Georg Fischer, Nov 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved