login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009714
a(n) = Product_{i=0..8} floor((n+i)/9).
12
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144, 327680, 409600, 512000, 640000, 800000, 1000000, 1250000, 1562500
OFFSET
0,11
COMMENTS
For n >= 9, a(n) is the maximal product of 9 positive integers with sum n. - Wesley Ivan Hurt, Jul 08 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 0, 0, 0, -28, 56, -28, 0, 0, 0, 0, 0, 0, 56, -112, 56, 0, 0, 0, 0, 0, 0, -70, 140, -70, 0, 0, 0, 0, 0, 0, 56, -112, 56, 0, 0, 0, 0, 0, 0, -28, 56, -28, 0, 0, 0, 0, 0, 0, 8, -16, 8, 0, 0, 0, 0, 0, 0, -1, 2, -1).
FORMULA
a(9*n) = n^9. - Bernard Schott, Nov 20 2022
a(9*n+j) = n^(9-j)*(n+1)^j for 0 <= j <= 8. - Robert Israel, Nov 21 2022
Sum_{n>=9} 1/a(n) = 1 + zeta(9). - Amiram Eldar, Jan 10 2023
MATHEMATICA
A009714[n_] := Product[Floor[(n + i)/9], {i, 0, 8}];
Array[A009714, 50, 0] (* Paolo Xausa, Aug 21 2024 *)
PROG
(PARI) a(n) = prod(k=0, 8, floor((n+k)/9)); \\ Georg Fischer, Nov 07 2019
CROSSREFS
Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), this sequence (k=9), A354600 (k=10).
Cf. A001017 (n^9, a subsequence), A013667.
Sequence in context: A281938 A242350 A115213 * A051535 A008862 A145116
KEYWORD
nonn,easy
STATUS
approved