login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286660
a(n) = a(n-1) + sum of base-100 digits of a(n-1), a(0) = 1.
5
1, 2, 4, 8, 16, 32, 64, 128, 157, 215, 232, 266, 334, 371, 445, 494, 592, 689, 784, 875, 958, 1025, 1060, 1130, 1171, 1253, 1318, 1349, 1411, 1436, 1486, 1586, 1687, 1790, 1897, 2012, 2044, 2108, 2137, 2195, 2311, 2345, 2413, 2450, 2524, 2573, 2671, 2768, 2863, 2954, 3037, 3104, 3139
OFFSET
0,2
LINKS
EXAMPLE
a(7) = 128 = 1 * 100^1 + 28 * 100^0. The sum of digits of a(8 - 1) = 128 in base 100 is therefore 1 + 28 = 29. a(8) = a(7) + the sum of digits of a(7) in base 100 is therefore 128 + 29 = 157.
MAPLE
g:= n -> n+convert(convert(n, base, 100), `+`):
A[0]:= 1:
for n from 1 to 100 do A[n]:= g(A[n-1]) od:
seq(A[i], i=0..100); # Robert Israel, May 22 2017
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n-1] + Total[IntegerDigits[a[n-1], 100]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2017 *)
NestList[#+Total[IntegerDigits[#, 100]]&, 1, 60] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) a(n) = if(n < 8, return(1<<(n-1))); my(r = cr = 128); for(i=8, n, while(cr > 0, r += cr % 100; cr \= 100); cr = r); r \\ David A. Corneth, May 15 2017
CROSSREFS
Sequence in context: A036146 A036144 A327368 * A009641 A089889 A297526
KEYWORD
nonn,base
AUTHOR
Peter Weiss, May 12 2017
STATUS
approved