login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208743
Number of subsets of the set {1,2,...,n} which do not contain two elements whose difference is 6.
3
2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 1215, 2025, 3375, 5625, 9375, 15625, 25000, 40000, 64000, 102400, 163840, 262144, 425984, 692224, 1124864, 1827904, 2970344, 4826809, 7797153, 12595401, 20346417, 32867289, 53093313, 85766121, 138859434
OFFSET
1,1
REFERENCES
M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=6.
LINKS
Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, -5, 5, 5, 0, 0, 0, 15, -15, -15, 0, 0, 0, 15, -15, -15, 0, 0, 0, -5, 5, 5, 0, 0, 0, -1, 1, 1).
FORMULA
a(n) = F(floor(n/6) + 3)^(n mod 6)*F(floor(n/6) + 2)^(6 - (n mod 6)) where F(n) is the n-th Fibonacci number.
a(n) = a(n-1) + a(n-2) - 5*a(n-6) + 5*a(n-7) + 5*a(n-8) + 15*a(n-12) - 15*a(n-13) - 15*a(n-14) + 15*a(n-18) - 15*a(n-19) - 15*a(n-20) - 5*a(n-24) + 5*a(n-25) + 5*a(n-26) - a(n-30) + a(n-31) + a(n-32).
G.f.: x*(2 + 2*x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 10*x^6 - 6*x^7 - 14*x^8 - 16*x^9 - 14*x^10 - x^11 - 30*x^12 - 29*x^13 - 15*x^14 - 15*x^15 - 15*x^16 - 20*x^17 - 30*x^18 - 10*x^19 + 5*x^20 + 5*x^21 + 5*x^22 + 4*x^23 + 10*x^24 + 6*x^25 + x^26 + x^27 + x^28 + x^29 + 2*x^30 + x^31) / ((1 + x^2)*(1 - x - x^2)*(1 - x^2 + x^4)*(1 + x^3 - x^6)*(1 - x^3 - x^6)*(1 + 7*x^6 + x^12)). - Colin Barker, Feb 23 2017
EXAMPLE
If n=7 then we must count all subsets not containing both 1 and 7. There are 2^5 subsets containing 1 and 7, giving us 2^7 - 2^5 = 48. Thus a(7) = 96.
MATHEMATICA
Table[Fibonacci[Floor[n/6] + 3]^Mod[n, 6] * Fibonacci[Floor[n/6] + 2]^(6 - Mod[n, 6]), {n, 1, 80}]
LinearRecurrence[{1, 1, 0, 0, 0, -5, 5, 5, 0, 0, 0, 15, -15, -15, 0, 0, 0, 15, -15, -15, 0, 0, 0, -5, 5, 5, 0, 0, 0, -1, 1, 1}, {2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 1215, 2025, 3375, 5625, 9375, 15625, 25000, 40000, 64000, 102400, 163840, 262144, 425984, 692224, 1124864, 1827904, 2970344, 4826809, 7797153, 12595401}, 80]
PROG
(PARI) Vec(x*(2 + 2*x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 10*x^6 - 6*x^7 - 14*x^8 - 16*x^9 - 14*x^10 - x^11 - 30*x^12 - 29*x^13 - 15*x^14 - 15*x^15 - 15*x^16 - 20*x^17 - 30*x^18 - 10*x^19 + 5*x^20 + 5*x^21 + 5*x^22 + 4*x^23 + 10*x^24 + 6*x^25 + x^26 + x^27 + x^28 + x^29 + 2*x^30 + x^31) / ((1 + x^2)*(1 - x - x^2)*(1 - x^2 + x^4)*(1 + x^3 - x^6)*(1 - x^3 - x^6)*(1 + 7*x^6 + x^12)) + O(x^30)) \\ Colin Barker, Feb 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David Nacin, Mar 01 2012
STATUS
approved