Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jan 10 2023 01:48:48
%S 0,0,0,0,0,0,1,2,4,8,16,32,64,96,144,216,324,486,729,972,1296,1728,
%T 2304,3072,4096,5120,6400,8000,10000,12500,15625,18750,22500,27000,
%U 32400,38880,46656,54432,63504,74088,86436,100842,117649,134456,153664,175616,200704
%N a(n) = Product_{j=0..5} floor((n+j)/6).
%C For n >= 6, a(n) is the maximal product of 6 positive integers with sum n. - _Wesley Ivan Hurt_, Jun 29 2022
%C The maximal product of k positive variables when their sum is equal to s is obtained when each term = s/k; hence, a(6m) = m^6 (A001014). - _Bernard Schott_, Jul 28 2022
%H G. C. Greubel, <a href="/A008881/b008881.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,5,-10,5,0,0,0,-10,20,-10,0,0,0,10,-20,10,0,0,0,-5,10,-5,0,0,0,1,-2,1).
%F Sum_{n>=6} 1/a(n) = 1 + zeta(6). - _Amiram Eldar_, Jan 10 2023
%p seq( mul( floor((n+i)/6), i=0..5 ), n=0..80);
%t Product[Floor[(Range[51]+j-2)/6], {j,6}] (* _G. C. Greubel_, Sep 13 2019 *)
%o (PARI) vector(50, n, prod(j=0,5, (n+j)\6) ) \\ _G. C. Greubel_, Sep 13 2019
%o (Magma) [(&*[Floor((n+j)/6): j in [0..5]]): n in [0..50]]; // _G. C. Greubel_, Sep 13 2019
%o (Sage) [product(floor((n+j)/6) for j in (0..5)) for n in (0..50)] # _G. C. Greubel_, Sep 13 2019
%o (GAP) List([0..50], n-> Product([0..5], j-> Int((n+j)/6))); # _G. C. Greubel_, Sep 13 2019
%Y Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), this sequence (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
%Y Cf. A001014 (6th power), A008588 (multiples of 6), A013664.
%K nonn,easy
%O 0,8
%A _N. J. A. Sloane_