login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076535
a(n) = A064405 (2^m+n) - 2^m (for m large enough this difference appears to be constant).
0
-3, -6, -5, -12, -3, -10, -9, -24, 1, -6, -5, -20, -3, -18, -17, -48, 9, 2, 3, -12, 5, -10, -9, -40, 9, -6, -5, -36, -3, -34, -33, -96, 25, 18, 19, 4, 21, 6, 7, -24, 25, 10, 11, -20, 13, -18, -17, -80, 33, 18, 19, -12, 21, -10, -9, -72, 25, -6, -5, -68, -3, -66, -65, -192, 57, 50, 51, 36, 53, 38, 39, 8, 57, 42, 43, 12, 45, 14, 15
OFFSET
0,1
FORMULA
a(n) = n + 1 - 4*A001316(n). a(0) = -3, a(2n) = a(n) + n, a(2n+1) = 2a(n). - Ralf Stephan, Oct 08 2003
EXAMPLE
For n=17; for m=1,2,3,4,5,6,7,8,9,10 values of A064405 (2^m+17) - 2^m are .... 2,2,2,10,2,2,2,2,2,2, so for n>4 the difference seems always equal to 2, hence a(17)=2
PROG
(PARI) A001316(n)=sum(k=0, n, binomial(n, k)%2)
for(n=0, 100, print1(n+1-4*A001316(n), ", ")) \\ Lambert Klasen
CROSSREFS
Cf. A064405.
Sequence in context: A331124 A299209 A007479 * A349102 A285327 A239487
KEYWORD
sign
AUTHOR
Benoit Cloitre, Oct 18 2002
EXTENSIONS
More terms from Lambert Klasen (lambert.klasen(AT)gmx.de), Jan 14 2005
STATUS
approved