login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074840
Numerators a(n) of fractions slowly converging to sqrt(2): let a(1) = 0, b(n) = n - a(n); if (a(n) + 1) / b(n) < sqrt(2), then a(n+1) = a(n) + 1, else a(n+1)= a(n).
6
0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 41, 42, 42, 43, 43
OFFSET
1,4
COMMENTS
a(n) + b(n) = n and as n -> +infinity, a(n) / b(n) converges to sqrt(2). For all n, a(n) / b(n) < sqrt(2).
LINKS
Heinz H. Bauschke, Minh N. Dao, Scott B. Lindstrom, The Douglas-Rachford algorithm for a hyperplane and a doubleton, arXiv:1804.08880 [math.OC], 2018.
FORMULA
a(1) = 0. b(n) = n - a(n). If (a(n) + 1) / b(n) < sqrt(2), then a(n+1) = a(n) + 1, else a(n+1) = a(n).
a(n) = floor(n*(2-sqrt(2))). - Vladeta Jovovic, Oct 04 2003
a(n) = 2*n - ceiling(n*sqrt(2)). - Clark Kimberling, Sep 09 2011
EXAMPLE
a(6)= 3 so b(6) = 6 - 3 = 3. a(7) = 4 because (a(6) + 1) / b(6) = 4/3 which is < sqrt(2). So b(7) = 7 - 4 = 3. a(8) = 4 because (a(7) + 1) / b(7) = 5/3 which is not < sqrt(2).
MATHEMATICA
Table[Floor[n*(2 - Sqrt[2])], {n, 1, 50}] (* G. C. Greubel, Nov 28 2017 *)
PROG
(PARI) for(n=1, 30, print1(floor(n*(2-sqrt(2))), ", ")) \\ G. C. Greubel, Nov 28 2017
(Magma) [Floor(n*(2-Sqrt(2))): n in [1..30]]; // G. C. Greubel, Nov 28 2017
CROSSREFS
Cf. A001601.
Sequence in context: A244224 A259549 A098295 * A064542 A210434 A256502
KEYWORD
easy,frac,nonn
AUTHOR
Robert A. Stump (bee_ess107(AT)msn.com), Sep 09 2002
STATUS
approved