OFFSET
1,3
COMMENTS
Least k such that 1/k <= mean of {1, 1/2^2, 1/3^2,..., 1/n^2}.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = floor(n/(Sum_{k=1..n} 1/k^2)).
Approaches asymptotically n/zeta(2), zeta being the Riemann function.
For any e > 0 and large enough n, n/zeta(2) + 36/Pi^4 - 1 < a(n) < n/zeta(2) + 36/Pi^4 + e. (Possibly this holds even with e = 0 for n > 29.) - Charles R Greathouse IV, Apr 08 2015
MATHEMATICA
Table[Floor[HarmonicMean[Range[n]^2]], {n, 70}] (* Harvey P. Dale, Mar 08 2020 *)
PROG
(PARI) \\ Using only precision-independent integer operations:
a(n)=(n*n!^2)\sum(k=1, n, (n!\k)^2)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Stanislav Sykora, Apr 08 2015
STATUS
approved