login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176085
a(n) = A136431(n,n).
2
0, 1, 3, 11, 41, 155, 591, 2267, 8735, 33775, 130965, 509015, 1982269, 7732659, 30208749, 118167055, 462760369, 1814091011, 7118044023, 27952660883, 109853552255, 432021606103, 1700093447847, 6694137523051, 26372544576331, 103950885100775, 409928481296331
OFFSET
0,3
COMMENTS
a(n+1) is also the number of sequences of length 2n obeying the regular expression "0^* (1 or 2)^* 3^*" and having sum 3n. For example, a(3)=11 because of the sequences 0033, 0123, 0213, 0222, 1113, 1122, 1212, 1221, 2112, 2121, 2211. - Don Knuth, May 11 2016
LINKS
FORMULA
a(n+1) - 4*a(n) = -A081696(n-1).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: x*(x-sqrt(1-4*x))/(sqrt(1-4*x)*(x^2+4*x-1)).
Recurrence: (n-2)*a(n) = 2*(4*n-9)*a(n-1) - (15*n-38)*a(n-2) - 2*(2*n-5)* a(n-3).
a(n) ~ 4^n/sqrt(Pi*n). (End)
a(n) = Sum_{k=1..n} (F(k)*binomial(2*n-k-1,n-k)), where F(k) = A000045(k). - Vladimir Kruchinin, Mar 17 2016
Simpler g.f.: x/sqrt(1-4*x)/(x+sqrt(1-4*x)). - Don Knuth, May 11 2016
a(n) = A000045(3*n) - A054441(n). - Hrishikesh Venkataraman, May 27 2021
a(n) = 4*a(n-1) + a(n-2) - binomial(2*n-4,n-2) for n>=2. - Hrishikesh Venkataraman, Jul 02 2021
MAPLE
with(combinat); seq( add(binomial(2*n-k-1, n-k)*fibonacci(k), k=0..n), n=0..30); # G. C. Greubel, Nov 28 2019
1/(sqrt(1 - 4*x) + 1/x - 4): series(%, x, 27):
seq(coeff(%, x, k), k=0..26); # Peter Luschny, May 29 2021
MATHEMATICA
t[n_, k_]:= CoefficientList[ Series[x/(1-x-x^2)/(1-x)^k, {x, 0, k}], x][[k+1]]; Array[ t[#, #] &, 20]
Table[Sum[Binomial[2*n-k-1, n-k]*Fibonacci[k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 28 2019 *)
PROG
(Maxima)
a(n):=sum(fib(k)*binomial(2*n-k-1, n-k), k, 1, n); /* Vladimir Kruchinin, Mar 17 2016 */
(PARI) a(n) = sum(k=1, n, fibonacci(k)*binomial(2*n-k-1, n-k)) \\ Michel Marcus, Mar 17 2016
(Magma) [(&+[Binomial(2*n-k-1, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 28 2019
(Sage) [sum(binomial(2*n-k-1, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 28 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Binomial(2*n-k-1, n-k)*Fibonacci(k) )); # G. C. Greubel, Nov 28 2019
CROSSREFS
Sequence in context: A076540 A196472 A258471 * A356618 A129637 A084077
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Apr 08 2010
STATUS
approved