login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176082
Triangle, read by rows, T(n,k) = f(n,k) - f(n,0) + 1, where f(n,k) = Sum_{j=0..k} (n+k)!/((n-j)!*(k-j)!*j!) + Sum_{j=0..n-k} (2*n-k)!/((n-j)!*(n - k-j)!*j!).
1
1, 1, 1, 1, -24, 1, 1, -534, -534, 1, 1, -12050, -14000, -12050, 1, 1, -326430, -381325, -381325, -326430, 1, 1, -10442537, -12093494, -12275676, -12093494, -10442537, 1, 1, -384746012, -441975660, -448634214, -448634214, -441975660, -384746012, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -22, -1066, -38098, -1415508, -57347736, -2550711770, -124197093898, -6585168718564, -378067505752484, ...}.
FORMULA
T(n,k) = f(n,k) - f(n,0) + 1, where f(n,k) = Sum_{j=0..k} (n+k)!/((n-j)!*(k-j)! *j!) + Sum_{j=0..n-k} (2*n-k)!/((n-j)!*(n-k-j)!*j!).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -24, 1;
1, -534, -534, 1;
1, -12050, -14000, -12050, 1;
1, -326430, -381325, -381325, -326430, 1;
1, -10442537, -12093494, -12275676, -12093494, -10442537, 1;
MAPLE
b:=binomial; f(n, k):=b(n+k, n)*add(j!*b(n, j)*b(k, j), j=0..k) + b(2*n-k, n)*add( j!*b(n, j)*b(n-k, j), j=0..n-k); seq(seq(f(n, k)-f(n, 0)+1, k=0..n), n=0..10); # G. C. Greubel, Nov 27 2019
MATHEMATICA
f[n_, k_]:= Sum[(n+k)!/((n-j)!*(k-j)!*j!), {j, 0, k}] + Sum[(n-k)!/((n-j)!*(n-k- j)!*j!), {j, 0, n-k}]; Table[f[n, k] -f[n, 0] +1, {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) b=binomial; f(n, k) = b(n+k, n)*sum(j=0, k, j!*b(n, j)*b(k, j)) + b(2*n-k, n)* sum(j=0, n-k, j!*b(n, j)*b(n-k, j));
T(n, k) = f(n, k) - f(n, 0) + 1; \\ G. C. Greubel, Nov 27 2019
(Magma)
function f(n, k)
B:=Binomial;
return B(n+k, n)*(&+[Factorial(j)*B(n, j)*B(k, j): j in [0..k]]) + B(2*n-k, n)* (&+[Factorial(j)*B(n, j)*B(n-k, j): j in [0..n-k]]); end function;
[f(n, k) -f(n, 0) +1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 27 2019
(Sage)
def f(n, k):
b=binomial;
return b(n+k, n)*sum(factorial(j)*b(n, j)*b(k, j) for j in (0..k)) + b(2*n-k, n)*sum(factorial(j)*b(n, j)*b(n-k, j) for j in (0..n-k))
[[f(n, k) -f(n, 0) +1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 27 2019
(GAP)
B:=Binomial;;
f:= function(n, k) return B(n+k, n)*Sum([0..k], j-> Factorial(j)*B(n, j)*B(k, j)) + B(2*n-k, n)*Sum([0..n-k], j-> Factorial(j)*B(n, j)*B(n-k, j)); end;
Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n, 0)+1 ))); # G. C. Greubel, Nov 27 2019
CROSSREFS
Cf. A176081.
Sequence in context: A040578 A040577 A040576 * A022187 A040586 A040587
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 08 2010
STATUS
approved