OFFSET
0,3
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = [x^n] (2*x-1)/(sqrt(1-4*x)*(x-1)).
a(n) = binomial(2*n,n)*(1+hypergeom([1,n+1/2],[n+1],4))+I/sqrt(3).
a(n+1) = a(n) + 2*n*Catalan(n).
a(n) ~ (4/3)*4^n/sqrt((8*n+2)*Pi/2).
D-finite with recurrence n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
E.g.f.: exp(2*x)*BesselI(0,2*x) - exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. - Mélika Tebni, Feb 27 2024
MAPLE
b := n -> binomial(2*n, n): s := n -> add(b(j), j=0..n):
a := n -> b(n) - s(n-1): seq(a(n), n=0..26);
# second program:
A281593 := series(exp(2*x)*BesselI(0, 2*x) - exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 27): seq(n!*coeff(A281593, x, n), n=0..26); # Mélika Tebni, Feb 27 2024
MATHEMATICA
a[n_] = Binomial[2n, n](1+Hypergeometric2F1[1, n+1/2, n+1, 4])+I/Sqrt[3];
Table[Simplify[a[n]], {n, 0, 17}]
CoefficientList[Series[(2x -1)/((x -1) Sqrt[(1 -4x)]), {x, 0, 26}], x] (* Robert G. Wilson v, Feb 25 2017 *)
a[0]=1; a[n_]:=a[n-1] + 2*(n-1)*CatalanNumber[n-1]; Table[a[n], {n, 0, 26}] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(Sage)
def A():
a = b = c = 1
yield 1
while True:
yield a
c = (c * (4 * b - 2)) // (b + 1)
a += 2 * b * c
b += 1
a = A(); print([next(a) for _ in (0..25)]) # Peter Luschny, Feb 25 2017
(PARI) a(n) = binomial(2*n, n)-sum(j=0, n-1, binomial(2*j, j)); \\ Indranil Ghosh, Mar 03 2017
(PARI) c(n) = binomial(2*n, n)/(n+1);
a(n) = if(n==0, 1, a(n-1) + 2*(n-1)*c(n-1)); \\ Indranil Ghosh, Mar 03 2017
(Python)
import math
def C(n, r): return f(n)/f(r)/f(n-r)
def A281593(n):
s=0
for j in range(0, n):
s+=C(2*j, j)
return C(2*n, n)-s # Indranil Ghosh, Mar 03 2017
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, Feb 25 2017
STATUS
approved