login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281593
a(n) = b(n) - Sum_{j=0..n-1} b(j) with b(n) = binomial(2*n, n).
3
1, 1, 3, 11, 41, 153, 573, 2157, 8163, 31043, 118559, 454479, 1747771, 6740059, 26055459, 100939779, 391785129, 1523230569, 5931153429, 23126146629, 90282147849, 352846964649, 1380430179489, 5405662979649, 21186405207549, 83101804279101, 326199124351701
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] (2*x-1)/(sqrt(1-4*x)*(x-1)).
a(n) = binomial(2*n,n)*(1+hypergeom([1,n+1/2],[n+1],4))+I/sqrt(3).
a(n+1) = a(n) + 2*n*Catalan(n).
a(n) ~ (4/3)*4^n/sqrt((8*n+2)*Pi/2).
D-finite with recurrence n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
E.g.f.: exp(2*x)*BesselI(0,2*x) - exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. - Mélika Tebni, Feb 27 2024
MAPLE
b := n -> binomial(2*n, n): s := n -> add(b(j), j=0..n):
a := n -> b(n) - s(n-1): seq(a(n), n=0..26);
# second program:
A281593 := series(exp(2*x)*BesselI(0, 2*x) - exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 27): seq(n!*coeff(A281593, x, n), n=0..26); # Mélika Tebni, Feb 27 2024
MATHEMATICA
a[n_] = Binomial[2n, n](1+Hypergeometric2F1[1, n+1/2, n+1, 4])+I/Sqrt[3];
Table[Simplify[a[n]], {n, 0, 17}]
CoefficientList[Series[(2x -1)/((x -1) Sqrt[(1 -4x)]), {x, 0, 26}], x] (* Robert G. Wilson v, Feb 25 2017 *)
a[0]=1; a[n_]:=a[n-1] + 2*(n-1)*CatalanNumber[n-1]; Table[a[n], {n, 0, 26}] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(Sage)
def A():
a = b = c = 1
yield 1
while True:
yield a
c = (c * (4 * b - 2)) // (b + 1)
a += 2 * b * c
b += 1
a = A(); print([next(a) for _ in (0..25)]) # Peter Luschny, Feb 25 2017
(PARI) a(n) = binomial(2*n, n)-sum(j=0, n-1, binomial(2*j, j)); \\ Indranil Ghosh, Mar 03 2017
(PARI) c(n) = binomial(2*n, n)/(n+1);
a(n) = if(n==0, 1, a(n-1) + 2*(n-1)*c(n-1)); \\ Indranil Ghosh, Mar 03 2017
(Python)
import math
def C(n, r): return f(n)/f(r)/f(n-r)
def A281593(n):
s=0
for j in range(0, n):
s+=C(2*j, j)
return C(2*n, n)-s # Indranil Ghosh, Mar 03 2017
CROSSREFS
A279561(n) = (a(n)+1)/2.
A057552(n) = (a(n+2)-1)/2.
A162551(n) = a(n+1)-a(n).
Sequence in context: A032952 A001835 A079935 * A113437 A076540 A196472
KEYWORD
nonn,changed
AUTHOR
Peter Luschny, Feb 25 2017
STATUS
approved