login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335819
E.g.f.: exp((3/2) * x * (2 + x)).
0
1, 3, 12, 54, 270, 1458, 8424, 51516, 331452, 2230740, 15641424, 113846472, 857706408, 6671592216, 53465326560, 440602852752, 3727748253456, 32332181692464, 287111706003648, 2607272929404000, 24187186030419936, 228997933855499808, 2210786521482955392, 21746223198911853504
OFFSET
0,2
FORMULA
G.f.: 1 / (1 - 3*x - 3*x^2 / (1 - 3*x - 6*x^2 / (1 - 3*x - 9*x^2 / (1 - 3*x - 12*x^2 / (1 - ...))))), a continued fraction.
D-finite with recurrence a(n) = 3 * (a(n-1) + (n-1) * a(n-2)).
a(n) = Sum_{k=0..n} binomial(n,k) * A000085(k) * A000898(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * A202830(k).
a(n) ~ 3^(n/2) * exp(-3/4 + sqrt(3*n) - n/2) * n^(n/2) / sqrt(2). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[(3/2) x (2 + x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[1] = 3; a[n_] := a[n] = 3 (a[n - 1] + (n - 1) a[n - 2]); Table[a[n], {n, 0, 23}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp((3*x*(2 + x)/2)))) \\ Michel Marcus, Nov 21 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 20 2020
STATUS
approved