login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.
2

%I #25 Dec 13 2015 07:17:20

%S 1,1,1,2,1,2,1,4,4,1,4,4,1,6,12,8,1,6,12,8,1,8,24,32,16,1,8,24,32,16,

%T 1,10,40,80,80,32,1,10,40,80,80,32,1,12,60,160,240,192,64,1,12,60,160,

%U 240,192,64,1,14,84,280,560,672,448,128,1,14,84,280

%N Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.

%C A subset S of {1,2,...,n} is antisymmetric if x is an element of S implies n+1-x is not an element of S. In other words, the sum of any two elements of S does not equal n+1. For example, {1,2,5} is an antisymmetric subset of {1,2,3,4,5,6,7}. If n is odd, (n+1)/2 cannot be an element of an antisymmetric subset of {1,2,...,n}. (Note that for n=0, we define {1,...,n} to be the empty set, and thus T(0,0)=1 since the empty set is vacuously antisymmetric.)

%C We note, for example, that T(100,k) provides the number of possible size-k committees of the U.S. Senate in which no two members are from the same state.

%C Triangle, read by rows, A013609 rows repeated. - _Philippe Deléham_, Apr 09 2012

%C Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 09 2012

%H T. D. Noe, <a href="/A188440/b188440.txt">Rows n = 0..100, flattened</a>

%H Dennis Walsh, <a href="http://frank.mtsu.edu/~dwalsh/ANTISYMM.pdf">Notes on antisymmetric subsets of {1,2,...,n}</a>

%F T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.

%F Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).

%F G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).

%F T(n,k) = A152198(n,k)*2^k. - _Philippe Deléham_, Apr 09 2012

%F G.f.: (1+x)/(1-x^2-2*y*x^2). - _Philippe Deléham_, Apr 09 2012

%F T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- _Philippe Deléham_, Apr 09 2012

%e Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13:

%e 1

%e 1

%e 1 2

%e 1 2

%e 1 4 4

%e 1 4 4

%e 1 6 12 8

%e 1 6 12 8

%e 1 8 24 32 16

%e 1 8 24 32 16

%e 1 10 40 80 80 32

%e 1 10 40 80 80 32

%e 1 12 60 160 240 192 64

%e 1 12 60 160 240 192 64

%e ...

%e For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}:

%e {1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5},

%e {2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}.

%e (1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:

%e 1

%e 1 0

%e 1 2 0

%e 1 2 0 0

%e 1 4 4 0 0

%e 1 4 4 0 0 0

%e 1 6 12 8 0 0 0

%e 1 6 12 8 0 0 0 0

%e 1 8 24 32 16 0 0 0 0

%e 1 8 24 32 16 0 0 0 0 0

%e 1 10 40 80 80 32 0 0 0 0 0

%e 1 10 40 80 80 32 0 0 0 0 0 0

%e 1 12 60 160 240 192 64 0 0 0 0 0 0

%e 1 12 60 160 240 192 64 0 0 0 0 0 0 0

%e - _Philippe Deléham_, Apr 09 2012

%p seq(seq(binomial(floor(n/2),k)*2^k,k=0..floor(n/2)),n=0..22);

%t Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* _Jean-François Alcover_, Aug 19 2013, after _Philippe Deléham_ *)

%Y Cf. A108411, row sums of triangle T(n,k).

%Y Cf. A000079, A007318, A013109, A152198

%K nice,easy,nonn,tabf

%O 0,4

%A _Dennis P. Walsh_, Mar 31 2011