OFFSET
1,1
COMMENTS
Equivalently, numbers m such that phi(m) divides sigma(m) but tau(m) does not divide sigma(m), the corresponding quotients sigma(m)/phi(m) = A023897(m).
The only prime in the sequence is 2, because sigma(2)/phi(2) = 3 and sigma(2)/tau(2) = 3/2; then, if p odd prime, sigma(p)/phi(p) = (p+1)/(p-1) is an integer iff p = 3, but for p = 3, tau(3) divides sigma(3) with sigma(3)/tau(3) = 4/2 = 2.
EXAMPLE
Sigma(12) = 28, phi(12) = 4 and tau(12) = 6, hence phi(12) divides sigma(12), but tau(12) does not divide sigma(12), so 12 is a term.
MAPLE
with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) <> 0) : select(filter, [$1..500000]);
MATHEMATICA
Select[Range[500000], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {False, True} &] (* Amiram Eldar, Feb 28 2021 *)
PROG
(PARI) isok(m) = my(s=sigma(m)); !(s % eulerphi(m)) && (s % numdiv(m)); \\ Michel Marcus, Mar 01 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 28 2021
EXTENSIONS
a(5)-a(27) from Amiram Eldar, Feb 28 2021
STATUS
approved