login
A342104
Balanced numbers (A020492) that are not arithmetic numbers (A003601).
3
2, 12, 18630, 27000, 443394, 6242022, 14412720, 22315419, 26744100, 44630838, 50496960, 106034880, 128710944, 148536990, 162907584, 212072880, 218470770, 296259930, 349444530, 397253968, 535267776, 641250900, 641418960, 666274653, 684165552, 688208724, 709639408
OFFSET
1,1
COMMENTS
Equivalently, numbers m such that phi(m) divides sigma(m) but tau(m) does not divide sigma(m), the corresponding quotients sigma(m)/phi(m) = A023897(m).
The only prime in the sequence is 2, because sigma(2)/phi(2) = 3 and sigma(2)/tau(2) = 3/2; then, if p odd prime, sigma(p)/phi(p) = (p+1)/(p-1) is an integer iff p = 3, but for p = 3, tau(3) divides sigma(3) with sigma(3)/tau(3) = 4/2 = 2.
EXAMPLE
Sigma(12) = 28, phi(12) = 4 and tau(12) = 6, hence phi(12) divides sigma(12), but tau(12) does not divide sigma(12), so 12 is a term.
MAPLE
with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) <> 0) : select(filter, [$1..500000]);
MATHEMATICA
Select[Range[500000], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {False, True} &] (* Amiram Eldar, Feb 28 2021 *)
PROG
(PARI) isok(m) = my(s=sigma(m)); !(s % eulerphi(m)) && (s % numdiv(m)); \\ Michel Marcus, Mar 01 2021
CROSSREFS
Equals A020492 \ A003601.
Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A023897 (sigma/phi).
Sequence in context: A265092 A262032 A074200 * A378118 A274223 A280734
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 28 2021
EXTENSIONS
a(5)-a(27) from Amiram Eldar, Feb 28 2021
STATUS
approved