login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342104
Balanced numbers (A020492) that are not arithmetic numbers (A003601).
4
2, 12, 18630, 27000, 443394, 6242022, 14412720, 22315419, 26744100, 44630838, 50496960, 106034880, 128710944, 148536990, 162907584, 212072880, 218470770, 296259930, 349444530, 397253968, 535267776, 641250900, 641418960, 666274653, 684165552, 688208724, 709639408
OFFSET
1,1
COMMENTS
Equivalently, numbers m such that phi(m) divides sigma(m) but tau(m) does not divide sigma(m), the corresponding quotients sigma(m)/phi(m) = A023897(m).
The only prime in the sequence is 2, because sigma(2)/phi(2) = 3 and sigma(2)/tau(2) = 3/2; then, if p odd prime, sigma(p)/phi(p) = (p+1)/(p-1) is an integer iff p = 3, but for p = 3, tau(3) divides sigma(3) with sigma(3)/tau(3) = 4/2 = 2.
LINKS
EXAMPLE
Sigma(12) = 28, phi(12) = 4 and tau(12) = 6, hence phi(12) divides sigma(12), but tau(12) does not divide sigma(12), so 12 is a term.
MAPLE
with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) <> 0) : select(filter, [$1..500000]);
MATHEMATICA
Select[Range[500000], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {False, True} &] (* Amiram Eldar, Feb 28 2021 *)
PROG
(PARI) isok(m) = my(s=sigma(m)); !(s % eulerphi(m)) && (s % numdiv(m)); \\ Michel Marcus, Mar 01 2021
CROSSREFS
Equals A020492 \ A003601.
Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A023897 (sigma/phi).
Sequence in context: A265092 A262032 A074200 * A378118 A274223 A280734
KEYWORD
nonn
AUTHOR
Bernard Schott, Feb 28 2021
EXTENSIONS
a(5)-a(27) from Amiram Eldar, Feb 28 2021
STATUS
approved