login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014797
Squares of odd square pyramidal numbers.
2
1, 25, 3025, 8281, 81225, 148225, 670761, 1030225, 3186225, 4447881, 10962721, 14402025, 30525625, 38452401, 73188025, 89397025, 156975841, 187279225, 308880625, 361722361, 567440041, 654592225, 985646025, 1122987121, 1634180625, 1842555625, 2604979521, 2911142025
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
FORMULA
G.f.: -(x^12 +24*x^11 +2994*x^10 +5112*x^9 +54959*x^8 +35824*x^7 +129852*x^6 +35824*x^5 +54959*x^4 +5112*x^3 +2994*x^2 +24*x +1)/((x -1)^7*(x +1)^6). - Colin Barker, Nov 16 2012
a(n) = A015221(n)^2. - R. J. Mathar, Jul 30 2016
Sum_{n>=0} 1/a(n) = (171/4 - 18*sqrt(2))*Pi^2 - 54*Pi. - Amiram Eldar, Mar 07 2022
MATHEMATICA
CoefficientList[Series[-(x^12+24x^11+2994x^10+5112x^9+54959x^8+35824x^7+ 129852x^6+ 35824x^5+54959x^4+5112x^3+2994x^2+24x+1)/((x-1)^7(x+1)^6), {x, 0, 30}], x] (* or *) LinearRecurrence[ {1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1}, {1, 25, 3025, 8281, 81225, 148225, 670761, 1030225, 3186225, 4447881, 10962721, 14402025, 30525625}, 30](* Harvey P. Dale, Feb 17 2013 *)
CROSSREFS
Sequence in context: A082488 A363865 A209850 * A077519 A078215 A075414
KEYWORD
nonn,easy
STATUS
approved