login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370434
Expansion of Product_{n>=1} (1 - 4^(n-1)*x^n) * (1 + 4^(n-1)*x^n)^2.
2
1, 1, 3, 19, 60, 348, 1216, 6480, 23040, 121152, 445696, 2214912, 8475648, 40796160, 158564352, 754302976, 2949120000, 13694926848, 55180001280, 250151436288, 1008079994880, 4570684063744, 18552497111040, 82564035379200, 339344829186048, 1494986847682560, 6161930523770880
OFFSET
0,3
COMMENTS
Compare to Product_{n>=1} (1 - 4^n*x^n) * (1 + 4^n*x^n)^2 = Sum_{n>=0} 4^(n*(n+1)/2) * x^(n*(n+1)/2).
LINKS
FORMULA
a(n) ~ c^(1/4) * 2^(2*n + 2) * exp(2*sqrt(c*n)) / (5 * sqrt(3*Pi) * n^(3/4)), where c = -2*polylog(2, -1/4) - polylog(2, 1/4). - Vaclav Kotesovec, Feb 27 2024
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 60*x^4 + 348*x^5 + 1216*x^6 + 6480*x^7 + 23040*x^8 + 121152*x^9 + 445696*x^10 + 2214912*x^11 + 8475648*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 16*x^3)*(1 + 16*x^3)^2 * (1 - 64*x^4)*(1 + 64*x^4)^2 * ... * (1 - 4^(n-1)*x^n)*(1 + 4^(n-1)*x^n)^2 * ...
PROG
(PARI) {a(n) = polcoeff( prod(k=1, n, (1 - 4^(k-1)*x^k) * (1 + 4^(k-1)*x^k)^2 +x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2024
STATUS
approved