login
A338673
Expansion of Product_{k>=1} 1 / (1 - 4^(k-1)*x^k).
10
1, 1, 5, 21, 101, 421, 2021, 8421, 39397, 167397, 766437, 3244517, 14881253, 62804453, 283415013, 1210159589, 5401907685, 22966866405, 102497423845, 435085808101, 1925197238757, 8215432696293, 36068400468453, 153579729097189, 674546796630501, 2866238341681637, 12508012102193637
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} p(n,k) * 4^(n-k), where p(n,k) = number of partitions of n into k parts.
a(n) ~ sqrt(3) * polylog(2, 1/4)^(1/4) * 4^(n - 1/2) * exp(2*sqrt(polylog(2, 1/4)*n)) / (2*sqrt(Pi)*n^(3/4)). - Vaclav Kotesovec, May 09 2021
MATHEMATICA
nmax = 26; CoefficientList[Series[Product[1/(1 - 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 4^(n - k), {k, 0, n}], {n, 0, 26}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 4^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 23 2021
STATUS
approved