login
A338672
Number of n-step closed walks on the kagomé lattice.
0
1, 0, 4, 4, 28, 60, 264, 784, 3004, 10204, 37824, 135784, 502784, 1851200, 6901696, 25766144, 96797244, 364655100, 1379120400, 5230011896, 19890313128, 75823622984, 289698620336, 1109059301536, 4253731156128, 16342545417760, 62885474132992, 242331022479040, 935085717105792, 3612737418620032, 13974224404904704
OFFSET
0,3
LINKS
Li Gan, Algebraic Area of Lattice Random Walks and Exclusion Statistics, PhD thesis, Université Paris-Saclay, 2023. (see Appendix D.4)
B. Helffer, P. Kerdelhué, and J. Royo-Letelier, Chambers's formula for the graphene and the Hou model with kagome periodicity and applications, arXiv:1408.2814 [math.AP], 2014; Ann. Henri Poincaré, 17 (2016), 795-818.
P. Kerdelhué and J. Royo-Letelier, On the low lying spectrum of the magnetic Schrödinger operator with kagome periodicity, arXiv:1404.0642 [math.AP], 2014; Rev. Math. Phys., 26 (2014), 1450020.
FORMULA
a(n) is the constant coefficient in the expansion of 1/3 * trace(A^n), where A is the matrix {{0, y+x*y, y+1/x}, {1/y+1/(x*y), 0, 1/x+1/(x*y)}, {x+1/y, x+x*y, 0}}.
a(n) = (1/3) * ((-2)^n + 2 * Sum_{k=0..floor(n/2)} Sum_{j=0..k} binomial(n, 2*k) * binomial(k, j)^2 * binomial(2*j, j)).
a(n) ~ 2^(2*n+1) / (Pi*sqrt(3)*n). - Vaclav Kotesovec, Oct 10 2024
MATHEMATICA
a[n_] := ((-2)^n + 2 Sum[Binomial[n, 2 k] Binomial[k, j]^2 Binomial[2 j, j], {k, 0, Floor[n/2]}, {j, 0, k}])/3; Table[a[n], {n, 0, 30}]
PROG
(PARI) a(n)={((-2)^n + 2 * sum(k=0, n\2, sum(j=0, k, binomial(n, 2*k) * binomial(k, j)^2 * binomial(2*j, j))))/3} \\ Andrew Howroyd, Apr 24 2021
CROSSREFS
Sequence in context: A227715 A173049 A272040 * A065237 A264586 A348635
KEYWORD
nonn,walk
AUTHOR
Li GAN and Stéphane Ouvry, Apr 23 2021
STATUS
approved