login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338672
Number of n-step closed walks on the kagomé lattice.
0
1, 0, 4, 4, 28, 60, 264, 784, 3004, 10204, 37824, 135784, 502784, 1851200, 6901696, 25766144, 96797244, 364655100, 1379120400, 5230011896, 19890313128, 75823622984, 289698620336, 1109059301536, 4253731156128, 16342545417760, 62885474132992, 242331022479040, 935085717105792, 3612737418620032, 13974224404904704
OFFSET
0,3
LINKS
Li Gan, Algebraic Area of Lattice Random Walks and Exclusion Statistics, PhD thesis, Université Paris-Saclay, 2023. (see Appendix D.4)
B. Helffer, P. Kerdelhué, and J. Royo-Letelier, Chambers's formula for the graphene and the Hou model with kagome periodicity and applications, arXiv:1408.2814 [math.AP], 2014; Ann. Henri Poincaré, 17 (2016), 795-818.
P. Kerdelhué and J. Royo-Letelier, On the low lying spectrum of the magnetic Schrödinger operator with kagome periodicity, arXiv:1404.0642 [math.AP], 2014; Rev. Math. Phys., 26 (2014), 1450020.
FORMULA
a(n) is the constant coefficient in the expansion of 1/3 * trace(A^n), where A is the matrix {{0, y+x*y, y+1/x}, {1/y+1/(x*y), 0, 1/x+1/(x*y)}, {x+1/y, x+x*y, 0}}.
a(n) = (1/3) * ((-2)^n + 2 * Sum_{k=0..floor(n/2)} Sum_{j=0..k} binomial(n, 2*k) * binomial(k, j)^2 * binomial(2*j, j)).
a(n) ~ 2^(2*n+1) / (Pi*sqrt(3)*n). - Vaclav Kotesovec, Oct 10 2024
MATHEMATICA
a[n_] := ((-2)^n + 2 Sum[Binomial[n, 2 k] Binomial[k, j]^2 Binomial[2 j, j], {k, 0, Floor[n/2]}, {j, 0, k}])/3; Table[a[n], {n, 0, 30}]
PROG
(PARI) a(n)={((-2)^n + 2 * sum(k=0, n\2, sum(j=0, k, binomial(n, 2*k) * binomial(k, j)^2 * binomial(2*j, j))))/3} \\ Andrew Howroyd, Apr 24 2021
CROSSREFS
Sequence in context: A227715 A173049 A272040 * A065237 A264586 A348635
KEYWORD
nonn,walk
AUTHOR
Li GAN and Stéphane Ouvry, Apr 23 2021
STATUS
approved