login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075900
Expansion of g.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
46
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
OFFSET
0,3
COMMENTS
Number of compositions of partitions of n. a(3) = 7: 3, 21, 12, 111, 2|1, 11|1, 1|1|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split an integer composition of n into consecutive subsequences with weakly decreasing (or increasing) sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = 2^(n-1). - Seiichi Manyama, Aug 22 2020
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..3180 (terms 0..1000 from Alois P. Heinz)
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
FORMULA
a(n) = Sum_{ partitions n = c_1 + ... + c_k } 2^(n-k). If p(n, m) = number of partitions of n into m parts, a(n) = Sum_{m=1..n} p(n, m)*2^(n-m).
G.f.: Sum_{n>=0} (a(n)/2^n)*x^n = Product_{n>0} 1/(1-x^n/2). - Vladeta Jovovic, Feb 11 2003
a(n) = 1/n*Sum_{k=1..n} A080267(k)*a(n-k). - Vladeta Jovovic, Feb 11 2003
G.f.: exp( Sum_{n>=1} x^n / (n*(1 - 2^n*x^n)) ). - Paul D. Hanna, Jan 13 2013
a(n) = s(1,n), a(0)=1, where s(m,n) = Sum_{k=m..n/2} 2^(k-1)*s(k, n-k) + 2^(n-1), s(n,n) = 2^(n-1), s(m,n)=0, m>. - Vladimir Kruchinin, Sep 06 2014
a(n) ~ 2^(n-2) * (Pi^2 - 6*log(2)^2)^(1/4) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (3^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 09 2018
EXAMPLE
From Gus Wiseman, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 19 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(1),(1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(1),(1),(1) (2,1,1)
(2),(2)
(3),(1)
(1,1,1,1)
(1,1),(2)
(1,2),(1)
(2),(1,1)
(2,1),(1)
(1,1),(1,1)
(1,1,1),(1)
(2),(1),(1)
(1,1),(1),(1)
(1),(1),(1),(1)
(End)
MAPLE
oo := 101; t1 := mul(1/(1-x^n/2), n=1..oo): t2 := series(t1, x, oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
with(combinat); A075900 := proc(n) local i, t1, t2, t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
MATHEMATICA
b[n_]:= b[n]= Sum[d*2^(n - n/d), {d, Divisors[n]}];
a[0]= 1; a[n_]:= a[n]= 1/n*Sum[b[k]*a[n-k], {k, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, 1/(1-2^(k-1)*x^k+x*O(x^n))), n)} \\ Paul D. Hanna, Jan 13 2013
(PARI) {a(n)=polcoeff(exp(sum(k=1, n+1, x^k/(k*(1-2^k*x^k)+x*O(x^n)))), n)} \\ Paul D. Hanna, Jan 13 2013
(Maxima)
s(m, n):=if n<m then 0 else if n=m then 2^(n-1) else sum(2^(k-1)*s(k, n-k), k, m, ceiling(n/2))+2^(n-1);
makelist(s(1, n), n, 1, 27); /* Vladimir Kruchinin, Sep 06 2014 */
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(&*[1-2^(j-1)*x^j: j in [1..m+2]]) )); // G. C. Greubel, Jan 25 2024
(SageMath)
m=80;
def A075900_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 1/product(1-2^(j-1)*x^j for j in range(1, m+1)) ).list()
A075900_list(m) # G. C. Greubel, Jan 25 2024
CROSSREFS
Row sums of A327549.
The strict case is A304961.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings of partitions are A323583.
Splittings with distinct sums are A336127.
Starting with a reversed partition gives A316245.
Starting with a partition instead of composition gives A336136.
Sequence in context: A192301 A350249 A055622 * A176500 A334099 A136041
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 15 2002
EXTENSIONS
More terms from Vladeta Jovovic, Feb 11 2003
STATUS
approved