|
|
A075900
|
|
G.f.: Product_{n>0} 1/(1 - 2^(n-1)*x^n).
|
|
43
|
|
|
1, 1, 3, 7, 19, 43, 115, 259, 659, 1523, 3731, 8531, 20883, 47379, 113043, 259219, 609683, 1385363, 3245459, 7344531, 17028499, 38579603, 88585619, 199845267, 457864595, 1028904339, 2339763603, 5256820115, 11896157587, 26626389395
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Number of compositions of partitions of n. a(3) = 7: 3, 21, 12, 111, 2|1, 11|1, 1|1|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split an integer composition of n into consecutive subsequences with weakly decreasing (or increasing) sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = 2^(n-1). - Seiichi Manyama, Aug 22 2020
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{ partitions n = c_1 + ... + c_k } 2^(n-k). If p(n, m) = number of partitions of n into m parts, a(n) = Sum_{m=1..n} p(n, m)*2^(n-m).
G.f.: Sum_{n>=0} (a(n)/2^n)*x^n = Product_{n>0} 1/(1-x^n/2). - Vladeta Jovovic, Feb 11 2003
G.f.: exp( Sum_{n>=1} x^n / (n*(1 - 2^n*x^n)) ). - Paul D. Hanna, Jan 13 2013
a(n) = s(1,n), a(0)=1, where s(m,n)=sum(k=m..n/2, 2^(k-1)*s(k,n-k))+2^(n-1), s(n,n) = 2^(n-1), s(m,n)=0, m>. - Vladimir Kruchinin, Sep 06 2014
a(n) ~ 2^(n-2) * (Pi^2 - 6*log(2)^2)^(1/4) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (3^(1/4) * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Mar 09 2018
|
|
EXAMPLE
|
The a(0) = 1 through a(4) = 19 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(1),(1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(1),(1),(1) (2,1,1)
(2),(2)
(3),(1)
(1,1,1,1)
(1,1),(2)
(1,2),(1)
(2),(1,1)
(2,1),(1)
(1,1),(1,1)
(1,1,1),(1)
(2),(1),(1)
(1,1),(1),(1)
(1),(1),(1),(1)
(End)
|
|
MAPLE
|
oo := 101; t1 := mul(1/(1-x^n/2), n=1..oo): t2 := series(t1, x, oo-1): t3 := seriestolist(t2): A075900 := n->2^n*t3[n+1];
with(combinat); A075900 := proc(n) local i, t1, t2, t3; t1 := partition(n); t2 := 0; for i from 1 to nops(t1) do t3 := t1[i]; t2 := t2+2^(n-nops(t3)); od: t2; end;
|
|
MATHEMATICA
|
b[n_] := b[n] = Sum[d*2^(n - n/d), {d, Divisors[n]}]; a[0] = 1; a[n_] := a[n] = 1/n*Sum[b[k]*a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 20 2014, after Vladeta Jovovic, fixed by Vaclav Kotesovec, Mar 08 2018 *)
|
|
PROG
|
(PARI) {a(n)=polcoeff(prod(k=1, n, 1/(1-2^(k-1)*x^k+x*O(x^n))), n)} \\ Paul D. Hanna, Jan 13 2013
(PARI) {a(n)=polcoeff(exp(sum(k=1, n+1, x^k/(k*(1-2^k*x^k)+x*O(x^n)))), n)} \\ Paul D. Hanna, Jan 13 2013
(Maxima)
s(m, n):=if n<m then 0 else if n=m then 2^(n-1) else sum(2^(k-1)*s(k, n-k), k, m, ceiling(n/2))+2^(n-1);
|
|
CROSSREFS
|
Starting with a partition instead of composition gives A336136.
Starting with a reversed partition gives A316245.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings of partitions are A323583.
Splittings with distinct sums are A336127.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|