login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080267
a(n) = Sum_{d divides n} d*2^(n-n/d).
5
1, 5, 13, 41, 81, 257, 449, 1313, 2497, 6465, 11265, 33665, 53249, 143617, 269313, 672257, 1114113, 3159041, 4980737, 13568001, 23904257, 57675777, 96468993, 275980289, 424673281, 1090535425, 1963720705, 4823482369, 7784628225
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*2^(k-1)*x^k/(1 - 2^(k-1)*x^k). - N. J. A. Sloane, Jun 04 2003
G.f.: Sum_{k>=1} x^k/(1 - (2 * x)^k)^2. - Seiichi Manyama, Dec 20 2022
MAPLE
oo := 40; s1 := add( k*2^(k-1)*x^k/(1-2^(k-1)*x^k), k=1..oo): s2 := series(s1, x, oo-1): s3 := seriestolist(%): A080267 := n->s3[n+1];
MATHEMATICA
a[n_] := Sum[d*2^(n-n/d), {d, Divisors[n]}]; Array[a, 29] (* Jean-François Alcover, Mar 20 2014 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*2^(n-n/d)); \\ Michel Marcus, Mar 20 2014
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(2*x)^k)^2)) \\ Seiichi Manyama, Dec 20 2022
CROSSREFS
Sequence in context: A322155 A100210 A359730 * A034735 A305464 A200150
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 11 2003
STATUS
approved