Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 27 2024 04:04:27
%S 1,1,3,19,60,348,1216,6480,23040,121152,445696,2214912,8475648,
%T 40796160,158564352,754302976,2949120000,13694926848,55180001280,
%U 250151436288,1008079994880,4570684063744,18552497111040,82564035379200,339344829186048,1494986847682560,6161930523770880
%N Expansion of Product_{n>=1} (1 - 4^(n-1)*x^n) * (1 + 4^(n-1)*x^n)^2.
%C Compare to Product_{n>=1} (1 - 4^n*x^n) * (1 + 4^n*x^n)^2 = Sum_{n>=0} 4^(n*(n+1)/2) * x^(n*(n+1)/2).
%H Paul D. Hanna, <a href="/A370434/b370434.txt">Table of n, a(n) for n = 0..630</a>
%F a(n) ~ c^(1/4) * 2^(2*n + 2) * exp(2*sqrt(c*n)) / (5 * sqrt(3*Pi) * n^(3/4)), where c = -2*polylog(2, -1/4) - polylog(2, 1/4). - _Vaclav Kotesovec_, Feb 27 2024
%e G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 60*x^4 + 348*x^5 + 1216*x^6 + 6480*x^7 + 23040*x^8 + 121152*x^9 + 445696*x^10 + 2214912*x^11 + 8475648*x^12 + ...
%e where A(x) is the series expansion of the infinite product given by
%e A(x) = (1 - x)*(1 + x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 16*x^3)*(1 + 16*x^3)^2 * (1 - 64*x^4)*(1 + 64*x^4)^2 * ... * (1 - 4^(n-1)*x^n)*(1 + 4^(n-1)*x^n)^2 * ...
%o (PARI) {a(n) = polcoeff( prod(k=1,n, (1 - 4^(k-1)*x^k) * (1 + 4^(k-1)*x^k)^2 +x*O(x^n)), n)}
%o for(n=0,40, print1(a(n),", "))
%Y Cf. A370337, A370338, A370435, A344063, A338673.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 26 2024