login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.
6

%I #8 Mar 08 2024 16:59:22

%S 1,0,15,-80,480,-2832,16555,-94350,544050,-3048150,17177355,-95672700,

%T 530418150,-2927403000,16080310800,-87976127220,479790094275,

%U -2607515196300,14134142487950,-76415523881850,412207249329390,-2219152192374700,11925605885527275,-63987288706312050

%N Expansion of g.f. A(x) satisfying A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.

%H Paul D. Hanna, <a href="/A370535/b370535.txt">Table of n, a(n) for n = 1..501</a>

%e G.f.: A(X) = x + 15*x^3 - 80*x^4 + 480*x^5 - 2832*x^6 + 16555*x^7 - 94350*x^8 + 544050*x^9 - 3048150*x^10 + 17177355*x^11 - 95672700*x^12 + ...

%e where A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.

%e RELATED SERIES.

%e B(x) = A( x^2*(1 + 3*x)*A(x) )^(1/3) = A( x^3*(1 + 5*x)*A(x)^2 )^(1/5)

%e where B(x) is the g.f. of A370534, which begins

%e B(x) = x + x^2 + 4*x^3 - 20*x^4 + 100*x^5 - 500*x^6 + 2530*x^7 - 12290*x^8 + 63970*x^9 - 310770*x^10 + 1580415*x^11 - 7901235*x^12 + 39580710*x^13 + ...

%e B(x)^3 = A( x^2*(1 + 3*x)*A(x) ) = x^3 + 3*x^4 + 15*x^5 - 35*x^6 + 240*x^7 - 1392*x^8 + 8074*x^9 - 44550*x^10 + 262080*x^11 - 1413200*x^12 + ...

%e B(x)^5 = A( x^3*(1 + 5*x)*A(x)^2 ) = x^5 + 5*x^6 + 30*x^7 - 10*x^8 + 385*x^9 - 2139*x^10 + 13590*x^11 - 80910*x^12 + 515970*x^13 - 2952970*x^14 + ...

%e B(x)^15 = x^15 + 15*x^16 + 165*x^17 + 995*x^18 + 5805*x^19 + 16083*x^20 + 93075*x^21 - 82575*x^22 + 2166975*x^23 - 11141575*x^24 + 99995160*x^25 + ...

%e where B(x)^15 = A( x^2*(1 + 3*x)*A(x) )^5 = A( x^3*(1 + 5*x)*A(x)^2 )^3.

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); Ax = x*Ser(A);

%o A[#A] = polcoeff( subst(Ax,x, x^2*(1 + 3*x)*Ax )^5 - subst(Ax,x, x^3*(1 + 5*x)*Ax^2 )^3, #A+14);); A[n]}

%o for(n=1,30, print1(a(n),", "))

%Y Cf. A370536, A370533 (dual), A370437, A370537.

%K sign

%O 1,3

%A _Paul D. Hanna_, Mar 08 2024