This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024001 a(n) = 1-n^3. 5
 1, 0, -7, -26, -63, -124, -215, -342, -511, -728, -999, -1330, -1727, -2196, -2743, -3374, -4095, -4912, -5831, -6858, -7999, -9260, -10647, -12166, -13823, -15624, -17575, -19682, -21951, -24388, -26999, -29790, -32767, -35936, -39303, -42874, -46655, -50652, -54871, -59318, -63999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..730 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA From G. C. Greubel, May 11 2017: (Start) a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). G.f.: (1 - 4*x - x^2 - 2*x^3)/(1 - x)^4. E.g.f.: (1 - x - 3*x^2 - x^3)*exp(x). (End) MATHEMATICA Table[1 - n^3, {n, 0, 50}] (* Bruno Berselli, Jun 12 2015 *) CoefficientList[Series[(1 - 4*x - x^2 - 2*x^3)/(1 - x)^4, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *) PROG (MAGMA) [1-n^3: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011 (Maxima) A024001(n):=1-n^3\$ makelist(A024001(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */ (PARI) x='x+O('x^50); Vec((1 - 4*x - x^2 - 2*x^3)/(1 - x)^4) \\ G. C. Greubel, May 11 2017 CROSSREFS Sequence in context: A046433 A128972 A135300 * A068601 A268861 A221793 Adjacent sequences:  A023998 A023999 A024000 * A024002 A024003 A024004 KEYWORD sign,easy AUTHOR EXTENSIONS More terms from Henry Bottomley, Jan 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)