|
|
A046433
|
|
Numbers such that 3 steps are needed to reach a prime under "Sum of digits raised to its digits' powers" procedure.
|
|
2
|
|
|
7, 26, 62, 126, 147, 148, 158, 162, 174, 184, 185, 206, 216, 248, 260, 261, 266, 284, 377, 399, 407, 408, 417, 418, 428, 470, 471, 480, 481, 482, 508, 518, 580, 581, 599, 602, 612, 620, 621, 626, 662, 704, 714, 737, 740, 741, 773, 804, 805, 814, 815, 824
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Marius A. Burtea, Table of n, a(n) for n = 1..5000
|
|
EXAMPLE
|
26 -> 2^2 + 6^6 = 46660 -> 4^4 + 6^6 + 6^6 + 6^6 + 0^0 = 140225 -> 1^1 + 4^4 + 0^0 + 2^2 + 2^2 + 5^5 = 3391, which is prime, so 26 is a term.
|
|
MATHEMATICA
|
sop[n_] := Total[#^# & /@ (IntegerDigits[n] /. {0 -> 1})]; Select[ Range[825], Boole /@ PrimeQ[Rest[NestList[sop, #, 3]]] == {0, 0, 1} &] (* Jayanta Basu, Jun 25 2013 *)
|
|
PROG
|
(Magma) f:=func<n| &+[a[i]^a[i]:i in [1..#a]] where a is Intseq(n) >; [k:k in [1..900] |not IsPrime(f(k)) and not IsPrime(f(f(k))) and IsPrime(f(f(f(k))))]; // Marius A. Burtea, Oct 27 2019
|
|
CROSSREFS
|
Cf. A046431.
Sequence in context: A231888 A211645 A171340 * A128972 A135300 A024001
Adjacent sequences: A046430 A046431 A046432 * A046434 A046435 A046436
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest, Jul 15 1998
|
|
STATUS
|
approved
|
|
|
|